Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > opeqsn | Unicode version |
Description: Equivalence for an ordered pair equal to a singleton. (Contributed by NM, 3-Jun-2008.) |
Ref | Expression |
---|---|
opeqsn.1 | |
opeqsn.2 | |
opeqsn.3 |
Ref | Expression |
---|---|
opeqsn |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opeqsn.1 | . . . 4 | |
2 | opeqsn.2 | . . . 4 | |
3 | 1, 2 | dfop 3764 | . . 3 |
4 | 3 | eqeq1i 2178 | . 2 |
5 | 1 | snex 4171 | . . 3 |
6 | prexg 4196 | . . . 4 | |
7 | 1, 2, 6 | mp2an 424 | . . 3 |
8 | opeqsn.3 | . . 3 | |
9 | 5, 7, 8 | preqsn 3762 | . 2 |
10 | eqcom 2172 | . . . . 5 | |
11 | 1, 2, 1 | preqsn 3762 | . . . . 5 |
12 | eqcom 2172 | . . . . . . 7 | |
13 | 12 | anbi2i 454 | . . . . . 6 |
14 | anidm 394 | . . . . . 6 | |
15 | 13, 14 | bitri 183 | . . . . 5 |
16 | 10, 11, 15 | 3bitri 205 | . . . 4 |
17 | 16 | anbi1i 455 | . . 3 |
18 | dfsn2 3597 | . . . . . . 7 | |
19 | preq2 3661 | . . . . . . 7 | |
20 | 18, 19 | eqtr2id 2216 | . . . . . 6 |
21 | 20 | eqeq1d 2179 | . . . . 5 |
22 | eqcom 2172 | . . . . 5 | |
23 | 21, 22 | bitrdi 195 | . . . 4 |
24 | 23 | pm5.32i 451 | . . 3 |
25 | 17, 24 | bitri 183 | . 2 |
26 | 4, 9, 25 | 3bitri 205 | 1 |
Colors of variables: wff set class |
Syntax hints: wa 103 wb 104 wceq 1348 wcel 2141 cvv 2730 csn 3583 cpr 3584 cop 3586 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 |
This theorem is referenced by: relop 4761 |
Copyright terms: Public domain | W3C validator |