| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > opeqsn | Unicode version | ||
| Description: Equivalence for an ordered pair equal to a singleton. (Contributed by NM, 3-Jun-2008.) |
| Ref | Expression |
|---|---|
| opeqsn.1 |
|
| opeqsn.2 |
|
| opeqsn.3 |
|
| Ref | Expression |
|---|---|
| opeqsn |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opeqsn.1 |
. . . 4
| |
| 2 | opeqsn.2 |
. . . 4
| |
| 3 | 1, 2 | dfop 3856 |
. . 3
|
| 4 | 3 | eqeq1i 2237 |
. 2
|
| 5 | 1 | snex 4269 |
. . 3
|
| 6 | prexg 4295 |
. . . 4
| |
| 7 | 1, 2, 6 | mp2an 426 |
. . 3
|
| 8 | opeqsn.3 |
. . 3
| |
| 9 | 5, 7, 8 | preqsn 3853 |
. 2
|
| 10 | eqcom 2231 |
. . . . 5
| |
| 11 | 1, 2, 1 | preqsn 3853 |
. . . . 5
|
| 12 | eqcom 2231 |
. . . . . . 7
| |
| 13 | 12 | anbi2i 457 |
. . . . . 6
|
| 14 | anidm 396 |
. . . . . 6
| |
| 15 | 13, 14 | bitri 184 |
. . . . 5
|
| 16 | 10, 11, 15 | 3bitri 206 |
. . . 4
|
| 17 | 16 | anbi1i 458 |
. . 3
|
| 18 | dfsn2 3680 |
. . . . . . 7
| |
| 19 | preq2 3744 |
. . . . . . 7
| |
| 20 | 18, 19 | eqtr2id 2275 |
. . . . . 6
|
| 21 | 20 | eqeq1d 2238 |
. . . . 5
|
| 22 | eqcom 2231 |
. . . . 5
| |
| 23 | 21, 22 | bitrdi 196 |
. . . 4
|
| 24 | 23 | pm5.32i 454 |
. . 3
|
| 25 | 17, 24 | bitri 184 |
. 2
|
| 26 | 4, 9, 25 | 3bitri 206 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 |
| This theorem is referenced by: relop 4872 |
| Copyright terms: Public domain | W3C validator |