Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > opeqsn | Unicode version |
Description: Equivalence for an ordered pair equal to a singleton. (Contributed by NM, 3-Jun-2008.) |
Ref | Expression |
---|---|
opeqsn.1 | |
opeqsn.2 | |
opeqsn.3 |
Ref | Expression |
---|---|
opeqsn |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opeqsn.1 | . . . 4 | |
2 | opeqsn.2 | . . . 4 | |
3 | 1, 2 | dfop 3756 | . . 3 |
4 | 3 | eqeq1i 2173 | . 2 |
5 | 1 | snex 4163 | . . 3 |
6 | prexg 4188 | . . . 4 | |
7 | 1, 2, 6 | mp2an 423 | . . 3 |
8 | opeqsn.3 | . . 3 | |
9 | 5, 7, 8 | preqsn 3754 | . 2 |
10 | eqcom 2167 | . . . . 5 | |
11 | 1, 2, 1 | preqsn 3754 | . . . . 5 |
12 | eqcom 2167 | . . . . . . 7 | |
13 | 12 | anbi2i 453 | . . . . . 6 |
14 | anidm 394 | . . . . . 6 | |
15 | 13, 14 | bitri 183 | . . . . 5 |
16 | 10, 11, 15 | 3bitri 205 | . . . 4 |
17 | 16 | anbi1i 454 | . . 3 |
18 | dfsn2 3589 | . . . . . . 7 | |
19 | preq2 3653 | . . . . . . 7 | |
20 | 18, 19 | eqtr2id 2211 | . . . . . 6 |
21 | 20 | eqeq1d 2174 | . . . . 5 |
22 | eqcom 2167 | . . . . 5 | |
23 | 21, 22 | bitrdi 195 | . . . 4 |
24 | 23 | pm5.32i 450 | . . 3 |
25 | 17, 24 | bitri 183 | . 2 |
26 | 4, 9, 25 | 3bitri 205 | 1 |
Colors of variables: wff set class |
Syntax hints: wa 103 wb 104 wceq 1343 wcel 2136 cvv 2725 csn 3575 cpr 3576 cop 3578 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4099 ax-pow 4152 ax-pr 4186 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2296 df-v 2727 df-un 3119 df-in 3121 df-ss 3128 df-pw 3560 df-sn 3581 df-pr 3582 df-op 3584 |
This theorem is referenced by: relop 4753 |
Copyright terms: Public domain | W3C validator |