ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opeqsn Unicode version

Theorem opeqsn 4254
Description: Equivalence for an ordered pair equal to a singleton. (Contributed by NM, 3-Jun-2008.)
Hypotheses
Ref Expression
opeqsn.1  |-  A  e. 
_V
opeqsn.2  |-  B  e. 
_V
opeqsn.3  |-  C  e. 
_V
Assertion
Ref Expression
opeqsn  |-  ( <. A ,  B >.  =  { C }  <->  ( A  =  B  /\  C  =  { A } ) )

Proof of Theorem opeqsn
StepHypRef Expression
1 opeqsn.1 . . . 4  |-  A  e. 
_V
2 opeqsn.2 . . . 4  |-  B  e. 
_V
31, 2dfop 3779 . . 3  |-  <. A ,  B >.  =  { { A } ,  { A ,  B } }
43eqeq1i 2185 . 2  |-  ( <. A ,  B >.  =  { C }  <->  { { A } ,  { A ,  B } }  =  { C } )
51snex 4187 . . 3  |-  { A }  e.  _V
6 prexg 4213 . . . 4  |-  ( ( A  e.  _V  /\  B  e.  _V )  ->  { A ,  B }  e.  _V )
71, 2, 6mp2an 426 . . 3  |-  { A ,  B }  e.  _V
8 opeqsn.3 . . 3  |-  C  e. 
_V
95, 7, 8preqsn 3777 . 2  |-  ( { { A } ,  { A ,  B } }  =  { C } 
<->  ( { A }  =  { A ,  B }  /\  { A ,  B }  =  C
) )
10 eqcom 2179 . . . . 5  |-  ( { A }  =  { A ,  B }  <->  { A ,  B }  =  { A } )
111, 2, 1preqsn 3777 . . . . 5  |-  ( { A ,  B }  =  { A }  <->  ( A  =  B  /\  B  =  A ) )
12 eqcom 2179 . . . . . . 7  |-  ( B  =  A  <->  A  =  B )
1312anbi2i 457 . . . . . 6  |-  ( ( A  =  B  /\  B  =  A )  <->  ( A  =  B  /\  A  =  B )
)
14 anidm 396 . . . . . 6  |-  ( ( A  =  B  /\  A  =  B )  <->  A  =  B )
1513, 14bitri 184 . . . . 5  |-  ( ( A  =  B  /\  B  =  A )  <->  A  =  B )
1610, 11, 153bitri 206 . . . 4  |-  ( { A }  =  { A ,  B }  <->  A  =  B )
1716anbi1i 458 . . 3  |-  ( ( { A }  =  { A ,  B }  /\  { A ,  B }  =  C )  <->  ( A  =  B  /\  { A ,  B }  =  C ) )
18 dfsn2 3608 . . . . . . 7  |-  { A }  =  { A ,  A }
19 preq2 3672 . . . . . . 7  |-  ( A  =  B  ->  { A ,  A }  =  { A ,  B }
)
2018, 19eqtr2id 2223 . . . . . 6  |-  ( A  =  B  ->  { A ,  B }  =  { A } )
2120eqeq1d 2186 . . . . 5  |-  ( A  =  B  ->  ( { A ,  B }  =  C  <->  { A }  =  C ) )
22 eqcom 2179 . . . . 5  |-  ( { A }  =  C  <-> 
C  =  { A } )
2321, 22bitrdi 196 . . . 4  |-  ( A  =  B  ->  ( { A ,  B }  =  C  <->  C  =  { A } ) )
2423pm5.32i 454 . . 3  |-  ( ( A  =  B  /\  { A ,  B }  =  C )  <->  ( A  =  B  /\  C  =  { A } ) )
2517, 24bitri 184 . 2  |-  ( ( { A }  =  { A ,  B }  /\  { A ,  B }  =  C )  <->  ( A  =  B  /\  C  =  { A } ) )
264, 9, 253bitri 206 1  |-  ( <. A ,  B >.  =  { C }  <->  ( A  =  B  /\  C  =  { A } ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    = wceq 1353    e. wcel 2148   _Vcvv 2739   {csn 3594   {cpr 3595   <.cop 3597
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-v 2741  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603
This theorem is referenced by:  relop  4779
  Copyright terms: Public domain W3C validator