ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  topnex Unicode version

Theorem topnex 14322
Description: The class of all topologies is a proper class. The proof uses discrete topologies and pwnex 4484. (Contributed by BJ, 2-May-2021.)
Assertion
Ref Expression
topnex  |-  Top  e/  _V

Proof of Theorem topnex
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pwnex 4484 . . . 4  |-  { y  |  E. x  y  =  ~P x }  e/  _V
21neli 2464 . . 3  |-  -.  {
y  |  E. x  y  =  ~P x }  e.  _V
3 vex 2766 . . . . . . . 8  |-  x  e. 
_V
4 distop 14321 . . . . . . . 8  |-  ( x  e.  _V  ->  ~P x  e.  Top )
53, 4ax-mp 5 . . . . . . 7  |-  ~P x  e.  Top
6 eleq1 2259 . . . . . . 7  |-  ( y  =  ~P x  -> 
( y  e.  Top  <->  ~P x  e.  Top )
)
75, 6mpbiri 168 . . . . . 6  |-  ( y  =  ~P x  -> 
y  e.  Top )
87exlimiv 1612 . . . . 5  |-  ( E. x  y  =  ~P x  ->  y  e.  Top )
98abssi 3258 . . . 4  |-  { y  |  E. x  y  =  ~P x }  C_ 
Top
10 ssexg 4172 . . . 4  |-  ( ( { y  |  E. x  y  =  ~P x }  C_  Top  /\  Top  e.  _V )  ->  { y  |  E. x  y  =  ~P x }  e.  _V )
119, 10mpan 424 . . 3  |-  ( Top 
e.  _V  ->  { y  |  E. x  y  =  ~P x }  e.  _V )
122, 11mto 663 . 2  |-  -.  Top  e.  _V
1312nelir 2465 1  |-  Top  e/  _V
Colors of variables: wff set class
Syntax hints:    = wceq 1364   E.wex 1506    e. wcel 2167   {cab 2182    e/ wnel 2462   _Vcvv 2763    C_ wss 3157   ~Pcpw 3605   Topctop 14233
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-un 4468
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-nel 2463  df-ral 2480  df-rex 2481  df-v 2765  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-uni 3840  df-iun 3918  df-top 14234
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator