ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  topnex Unicode version

Theorem topnex 14760
Description: The class of all topologies is a proper class. The proof uses discrete topologies and pwnex 4540. (Contributed by BJ, 2-May-2021.)
Assertion
Ref Expression
topnex  |-  Top  e/  _V

Proof of Theorem topnex
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pwnex 4540 . . . 4  |-  { y  |  E. x  y  =  ~P x }  e/  _V
21neli 2497 . . 3  |-  -.  {
y  |  E. x  y  =  ~P x }  e.  _V
3 vex 2802 . . . . . . . 8  |-  x  e. 
_V
4 distop 14759 . . . . . . . 8  |-  ( x  e.  _V  ->  ~P x  e.  Top )
53, 4ax-mp 5 . . . . . . 7  |-  ~P x  e.  Top
6 eleq1 2292 . . . . . . 7  |-  ( y  =  ~P x  -> 
( y  e.  Top  <->  ~P x  e.  Top )
)
75, 6mpbiri 168 . . . . . 6  |-  ( y  =  ~P x  -> 
y  e.  Top )
87exlimiv 1644 . . . . 5  |-  ( E. x  y  =  ~P x  ->  y  e.  Top )
98abssi 3299 . . . 4  |-  { y  |  E. x  y  =  ~P x }  C_ 
Top
10 ssexg 4223 . . . 4  |-  ( ( { y  |  E. x  y  =  ~P x }  C_  Top  /\  Top  e.  _V )  ->  { y  |  E. x  y  =  ~P x }  e.  _V )
119, 10mpan 424 . . 3  |-  ( Top 
e.  _V  ->  { y  |  E. x  y  =  ~P x }  e.  _V )
122, 11mto 666 . 2  |-  -.  Top  e.  _V
1312nelir 2498 1  |-  Top  e/  _V
Colors of variables: wff set class
Syntax hints:    = wceq 1395   E.wex 1538    e. wcel 2200   {cab 2215    e/ wnel 2495   _Vcvv 2799    C_ wss 3197   ~Pcpw 3649   Topctop 14671
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-un 4524
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-nel 2496  df-ral 2513  df-rex 2514  df-v 2801  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-uni 3889  df-iun 3967  df-top 14672
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator