ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  topnex Unicode version

Theorem topnex 13625
Description: The class of all topologies is a proper class. The proof uses discrete topologies and pwnex 4451. (Contributed by BJ, 2-May-2021.)
Assertion
Ref Expression
topnex  |-  Top  e/  _V

Proof of Theorem topnex
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pwnex 4451 . . . 4  |-  { y  |  E. x  y  =  ~P x }  e/  _V
21neli 2444 . . 3  |-  -.  {
y  |  E. x  y  =  ~P x }  e.  _V
3 vex 2742 . . . . . . . 8  |-  x  e. 
_V
4 distop 13624 . . . . . . . 8  |-  ( x  e.  _V  ->  ~P x  e.  Top )
53, 4ax-mp 5 . . . . . . 7  |-  ~P x  e.  Top
6 eleq1 2240 . . . . . . 7  |-  ( y  =  ~P x  -> 
( y  e.  Top  <->  ~P x  e.  Top )
)
75, 6mpbiri 168 . . . . . 6  |-  ( y  =  ~P x  -> 
y  e.  Top )
87exlimiv 1598 . . . . 5  |-  ( E. x  y  =  ~P x  ->  y  e.  Top )
98abssi 3232 . . . 4  |-  { y  |  E. x  y  =  ~P x }  C_ 
Top
10 ssexg 4144 . . . 4  |-  ( ( { y  |  E. x  y  =  ~P x }  C_  Top  /\  Top  e.  _V )  ->  { y  |  E. x  y  =  ~P x }  e.  _V )
119, 10mpan 424 . . 3  |-  ( Top 
e.  _V  ->  { y  |  E. x  y  =  ~P x }  e.  _V )
122, 11mto 662 . 2  |-  -.  Top  e.  _V
1312nelir 2445 1  |-  Top  e/  _V
Colors of variables: wff set class
Syntax hints:    = wceq 1353   E.wex 1492    e. wcel 2148   {cab 2163    e/ wnel 2442   _Vcvv 2739    C_ wss 3131   ~Pcpw 3577   Topctop 13536
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-un 4435
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-nel 2443  df-ral 2460  df-rex 2461  df-v 2741  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-uni 3812  df-iun 3890  df-top 13537
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator