ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  topnex Unicode version

Theorem topnex 14673
Description: The class of all topologies is a proper class. The proof uses discrete topologies and pwnex 4514. (Contributed by BJ, 2-May-2021.)
Assertion
Ref Expression
topnex  |-  Top  e/  _V

Proof of Theorem topnex
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pwnex 4514 . . . 4  |-  { y  |  E. x  y  =  ~P x }  e/  _V
21neli 2475 . . 3  |-  -.  {
y  |  E. x  y  =  ~P x }  e.  _V
3 vex 2779 . . . . . . . 8  |-  x  e. 
_V
4 distop 14672 . . . . . . . 8  |-  ( x  e.  _V  ->  ~P x  e.  Top )
53, 4ax-mp 5 . . . . . . 7  |-  ~P x  e.  Top
6 eleq1 2270 . . . . . . 7  |-  ( y  =  ~P x  -> 
( y  e.  Top  <->  ~P x  e.  Top )
)
75, 6mpbiri 168 . . . . . 6  |-  ( y  =  ~P x  -> 
y  e.  Top )
87exlimiv 1622 . . . . 5  |-  ( E. x  y  =  ~P x  ->  y  e.  Top )
98abssi 3276 . . . 4  |-  { y  |  E. x  y  =  ~P x }  C_ 
Top
10 ssexg 4199 . . . 4  |-  ( ( { y  |  E. x  y  =  ~P x }  C_  Top  /\  Top  e.  _V )  ->  { y  |  E. x  y  =  ~P x }  e.  _V )
119, 10mpan 424 . . 3  |-  ( Top 
e.  _V  ->  { y  |  E. x  y  =  ~P x }  e.  _V )
122, 11mto 664 . 2  |-  -.  Top  e.  _V
1312nelir 2476 1  |-  Top  e/  _V
Colors of variables: wff set class
Syntax hints:    = wceq 1373   E.wex 1516    e. wcel 2178   {cab 2193    e/ wnel 2473   _Vcvv 2776    C_ wss 3174   ~Pcpw 3626   Topctop 14584
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-un 4498
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-nel 2474  df-ral 2491  df-rex 2492  df-v 2778  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-uni 3865  df-iun 3943  df-top 14585
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator