ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  topnex Unicode version

Theorem topnex 12726
Description: The class of all topologies is a proper class. The proof uses discrete topologies and pwnex 4427. (Contributed by BJ, 2-May-2021.)
Assertion
Ref Expression
topnex  |-  Top  e/  _V

Proof of Theorem topnex
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pwnex 4427 . . . 4  |-  { y  |  E. x  y  =  ~P x }  e/  _V
21neli 2433 . . 3  |-  -.  {
y  |  E. x  y  =  ~P x }  e.  _V
3 vex 2729 . . . . . . . 8  |-  x  e. 
_V
4 distop 12725 . . . . . . . 8  |-  ( x  e.  _V  ->  ~P x  e.  Top )
53, 4ax-mp 5 . . . . . . 7  |-  ~P x  e.  Top
6 eleq1 2229 . . . . . . 7  |-  ( y  =  ~P x  -> 
( y  e.  Top  <->  ~P x  e.  Top )
)
75, 6mpbiri 167 . . . . . 6  |-  ( y  =  ~P x  -> 
y  e.  Top )
87exlimiv 1586 . . . . 5  |-  ( E. x  y  =  ~P x  ->  y  e.  Top )
98abssi 3217 . . . 4  |-  { y  |  E. x  y  =  ~P x }  C_ 
Top
10 ssexg 4121 . . . 4  |-  ( ( { y  |  E. x  y  =  ~P x }  C_  Top  /\  Top  e.  _V )  ->  { y  |  E. x  y  =  ~P x }  e.  _V )
119, 10mpan 421 . . 3  |-  ( Top 
e.  _V  ->  { y  |  E. x  y  =  ~P x }  e.  _V )
122, 11mto 652 . 2  |-  -.  Top  e.  _V
1312nelir 2434 1  |-  Top  e/  _V
Colors of variables: wff set class
Syntax hints:    = wceq 1343   E.wex 1480    e. wcel 2136   {cab 2151    e/ wnel 2431   _Vcvv 2726    C_ wss 3116   ~Pcpw 3559   Topctop 12635
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-un 4411
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-nel 2432  df-ral 2449  df-rex 2450  df-v 2728  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-uni 3790  df-iun 3868  df-top 12636
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator