ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  topnex Unicode version

Theorem topnex 12880
Description: The class of all topologies is a proper class. The proof uses discrete topologies and pwnex 4434. (Contributed by BJ, 2-May-2021.)
Assertion
Ref Expression
topnex  |-  Top  e/  _V

Proof of Theorem topnex
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pwnex 4434 . . . 4  |-  { y  |  E. x  y  =  ~P x }  e/  _V
21neli 2437 . . 3  |-  -.  {
y  |  E. x  y  =  ~P x }  e.  _V
3 vex 2733 . . . . . . . 8  |-  x  e. 
_V
4 distop 12879 . . . . . . . 8  |-  ( x  e.  _V  ->  ~P x  e.  Top )
53, 4ax-mp 5 . . . . . . 7  |-  ~P x  e.  Top
6 eleq1 2233 . . . . . . 7  |-  ( y  =  ~P x  -> 
( y  e.  Top  <->  ~P x  e.  Top )
)
75, 6mpbiri 167 . . . . . 6  |-  ( y  =  ~P x  -> 
y  e.  Top )
87exlimiv 1591 . . . . 5  |-  ( E. x  y  =  ~P x  ->  y  e.  Top )
98abssi 3222 . . . 4  |-  { y  |  E. x  y  =  ~P x }  C_ 
Top
10 ssexg 4128 . . . 4  |-  ( ( { y  |  E. x  y  =  ~P x }  C_  Top  /\  Top  e.  _V )  ->  { y  |  E. x  y  =  ~P x }  e.  _V )
119, 10mpan 422 . . 3  |-  ( Top 
e.  _V  ->  { y  |  E. x  y  =  ~P x }  e.  _V )
122, 11mto 657 . 2  |-  -.  Top  e.  _V
1312nelir 2438 1  |-  Top  e/  _V
Colors of variables: wff set class
Syntax hints:    = wceq 1348   E.wex 1485    e. wcel 2141   {cab 2156    e/ wnel 2435   _Vcvv 2730    C_ wss 3121   ~Pcpw 3566   Topctop 12789
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-un 4418
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-nel 2436  df-ral 2453  df-rex 2454  df-v 2732  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-uni 3797  df-iun 3875  df-top 12790
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator