ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  topnex Unicode version

Theorem topnex 14254
Description: The class of all topologies is a proper class. The proof uses discrete topologies and pwnex 4480. (Contributed by BJ, 2-May-2021.)
Assertion
Ref Expression
topnex  |-  Top  e/  _V

Proof of Theorem topnex
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pwnex 4480 . . . 4  |-  { y  |  E. x  y  =  ~P x }  e/  _V
21neli 2461 . . 3  |-  -.  {
y  |  E. x  y  =  ~P x }  e.  _V
3 vex 2763 . . . . . . . 8  |-  x  e. 
_V
4 distop 14253 . . . . . . . 8  |-  ( x  e.  _V  ->  ~P x  e.  Top )
53, 4ax-mp 5 . . . . . . 7  |-  ~P x  e.  Top
6 eleq1 2256 . . . . . . 7  |-  ( y  =  ~P x  -> 
( y  e.  Top  <->  ~P x  e.  Top )
)
75, 6mpbiri 168 . . . . . 6  |-  ( y  =  ~P x  -> 
y  e.  Top )
87exlimiv 1609 . . . . 5  |-  ( E. x  y  =  ~P x  ->  y  e.  Top )
98abssi 3254 . . . 4  |-  { y  |  E. x  y  =  ~P x }  C_ 
Top
10 ssexg 4168 . . . 4  |-  ( ( { y  |  E. x  y  =  ~P x }  C_  Top  /\  Top  e.  _V )  ->  { y  |  E. x  y  =  ~P x }  e.  _V )
119, 10mpan 424 . . 3  |-  ( Top 
e.  _V  ->  { y  |  E. x  y  =  ~P x }  e.  _V )
122, 11mto 663 . 2  |-  -.  Top  e.  _V
1312nelir 2462 1  |-  Top  e/  _V
Colors of variables: wff set class
Syntax hints:    = wceq 1364   E.wex 1503    e. wcel 2164   {cab 2179    e/ wnel 2459   _Vcvv 2760    C_ wss 3153   ~Pcpw 3601   Topctop 14165
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-un 4464
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-nel 2460  df-ral 2477  df-rex 2478  df-v 2762  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-uni 3836  df-iun 3914  df-top 14166
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator