ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pwntru Unicode version

Theorem pwntru 4201
Description: A slight strengthening of pwtrufal 14832. (Contributed by Mario Carneiro and Jim Kingdon, 12-Sep-2023.)
Assertion
Ref Expression
pwntru  |-  ( ( A  C_  { (/) }  /\  A  =/=  { (/) } )  ->  A  =  (/) )

Proof of Theorem pwntru
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 simpr 110 . . . 4  |-  ( ( A  C_  { (/) }  /\  A  =/=  { (/) } )  ->  A  =/=  { (/)
} )
21neneqd 2368 . . 3  |-  ( ( A  C_  { (/) }  /\  A  =/=  { (/) } )  ->  -.  A  =  { (/) } )
3 simpll 527 . . . . . 6  |-  ( ( ( A  C_  { (/) }  /\  A  =/=  { (/)
} )  /\  x  e.  A )  ->  A  C_ 
{ (/) } )
4 simpl 109 . . . . . . . . . 10  |-  ( ( A  C_  { (/) }  /\  A  =/=  { (/) } )  ->  A  C_  { (/) } )
54sselda 3157 . . . . . . . . 9  |-  ( ( ( A  C_  { (/) }  /\  A  =/=  { (/)
} )  /\  x  e.  A )  ->  x  e.  { (/) } )
6 elsni 3612 . . . . . . . . 9  |-  ( x  e.  { (/) }  ->  x  =  (/) )
75, 6syl 14 . . . . . . . 8  |-  ( ( ( A  C_  { (/) }  /\  A  =/=  { (/)
} )  /\  x  e.  A )  ->  x  =  (/) )
8 simpr 110 . . . . . . . 8  |-  ( ( ( A  C_  { (/) }  /\  A  =/=  { (/)
} )  /\  x  e.  A )  ->  x  e.  A )
97, 8eqeltrrd 2255 . . . . . . 7  |-  ( ( ( A  C_  { (/) }  /\  A  =/=  { (/)
} )  /\  x  e.  A )  ->  (/)  e.  A
)
109snssd 3739 . . . . . 6  |-  ( ( ( A  C_  { (/) }  /\  A  =/=  { (/)
} )  /\  x  e.  A )  ->  { (/) } 
C_  A )
113, 10eqssd 3174 . . . . 5  |-  ( ( ( A  C_  { (/) }  /\  A  =/=  { (/)
} )  /\  x  e.  A )  ->  A  =  { (/) } )
1211ex 115 . . . 4  |-  ( ( A  C_  { (/) }  /\  A  =/=  { (/) } )  ->  ( x  e.  A  ->  A  =  { (/) } ) )
1312exlimdv 1819 . . 3  |-  ( ( A  C_  { (/) }  /\  A  =/=  { (/) } )  ->  ( E. x  x  e.  A  ->  A  =  { (/) } ) )
142, 13mtod 663 . 2  |-  ( ( A  C_  { (/) }  /\  A  =/=  { (/) } )  ->  -.  E. x  x  e.  A )
15 notm0 3445 . 2  |-  ( -. 
E. x  x  e.  A  <->  A  =  (/) )
1614, 15sylib 122 1  |-  ( ( A  C_  { (/) }  /\  A  =/=  { (/) } )  ->  A  =  (/) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    = wceq 1353   E.wex 1492    e. wcel 2148    =/= wne 2347    C_ wss 3131   (/)c0 3424   {csn 3594
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-v 2741  df-dif 3133  df-in 3137  df-ss 3144  df-nul 3425  df-sn 3600
This theorem is referenced by:  exmid1dc  4202  exmid1stab  4210
  Copyright terms: Public domain W3C validator