ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pwntru Unicode version

Theorem pwntru 4160
Description: A slight strengthening of pwtrufal 13540. (Contributed by Mario Carneiro and Jim Kingdon, 12-Sep-2023.)
Assertion
Ref Expression
pwntru  |-  ( ( A  C_  { (/) }  /\  A  =/=  { (/) } )  ->  A  =  (/) )

Proof of Theorem pwntru
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 simpr 109 . . . 4  |-  ( ( A  C_  { (/) }  /\  A  =/=  { (/) } )  ->  A  =/=  { (/)
} )
21neneqd 2348 . . 3  |-  ( ( A  C_  { (/) }  /\  A  =/=  { (/) } )  ->  -.  A  =  { (/) } )
3 simpll 519 . . . . . 6  |-  ( ( ( A  C_  { (/) }  /\  A  =/=  { (/)
} )  /\  x  e.  A )  ->  A  C_ 
{ (/) } )
4 simpl 108 . . . . . . . . . 10  |-  ( ( A  C_  { (/) }  /\  A  =/=  { (/) } )  ->  A  C_  { (/) } )
54sselda 3128 . . . . . . . . 9  |-  ( ( ( A  C_  { (/) }  /\  A  =/=  { (/)
} )  /\  x  e.  A )  ->  x  e.  { (/) } )
6 elsni 3578 . . . . . . . . 9  |-  ( x  e.  { (/) }  ->  x  =  (/) )
75, 6syl 14 . . . . . . . 8  |-  ( ( ( A  C_  { (/) }  /\  A  =/=  { (/)
} )  /\  x  e.  A )  ->  x  =  (/) )
8 simpr 109 . . . . . . . 8  |-  ( ( ( A  C_  { (/) }  /\  A  =/=  { (/)
} )  /\  x  e.  A )  ->  x  e.  A )
97, 8eqeltrrd 2235 . . . . . . 7  |-  ( ( ( A  C_  { (/) }  /\  A  =/=  { (/)
} )  /\  x  e.  A )  ->  (/)  e.  A
)
109snssd 3701 . . . . . 6  |-  ( ( ( A  C_  { (/) }  /\  A  =/=  { (/)
} )  /\  x  e.  A )  ->  { (/) } 
C_  A )
113, 10eqssd 3145 . . . . 5  |-  ( ( ( A  C_  { (/) }  /\  A  =/=  { (/)
} )  /\  x  e.  A )  ->  A  =  { (/) } )
1211ex 114 . . . 4  |-  ( ( A  C_  { (/) }  /\  A  =/=  { (/) } )  ->  ( x  e.  A  ->  A  =  { (/) } ) )
1312exlimdv 1799 . . 3  |-  ( ( A  C_  { (/) }  /\  A  =/=  { (/) } )  ->  ( E. x  x  e.  A  ->  A  =  { (/) } ) )
142, 13mtod 653 . 2  |-  ( ( A  C_  { (/) }  /\  A  =/=  { (/) } )  ->  -.  E. x  x  e.  A )
15 notm0 3414 . 2  |-  ( -. 
E. x  x  e.  A  <->  A  =  (/) )
1614, 15sylib 121 1  |-  ( ( A  C_  { (/) }  /\  A  =/=  { (/) } )  ->  A  =  (/) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    = wceq 1335   E.wex 1472    e. wcel 2128    =/= wne 2327    C_ wss 3102   (/)c0 3394   {csn 3560
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2139
This theorem depends on definitions:  df-bi 116  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-v 2714  df-dif 3104  df-in 3108  df-ss 3115  df-nul 3395  df-sn 3566
This theorem is referenced by:  exmid1dc  4161  exmid1stab  13543
  Copyright terms: Public domain W3C validator