ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pwntru Unicode version

Theorem pwntru 4259
Description: A slight strengthening of pwtrufal 16136. (Contributed by Mario Carneiro and Jim Kingdon, 12-Sep-2023.)
Assertion
Ref Expression
pwntru  |-  ( ( A  C_  { (/) }  /\  A  =/=  { (/) } )  ->  A  =  (/) )

Proof of Theorem pwntru
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 simpr 110 . . . 4  |-  ( ( A  C_  { (/) }  /\  A  =/=  { (/) } )  ->  A  =/=  { (/)
} )
21neneqd 2399 . . 3  |-  ( ( A  C_  { (/) }  /\  A  =/=  { (/) } )  ->  -.  A  =  { (/) } )
3 simpll 527 . . . . . 6  |-  ( ( ( A  C_  { (/) }  /\  A  =/=  { (/)
} )  /\  x  e.  A )  ->  A  C_ 
{ (/) } )
4 simpl 109 . . . . . . . . . 10  |-  ( ( A  C_  { (/) }  /\  A  =/=  { (/) } )  ->  A  C_  { (/) } )
54sselda 3201 . . . . . . . . 9  |-  ( ( ( A  C_  { (/) }  /\  A  =/=  { (/)
} )  /\  x  e.  A )  ->  x  e.  { (/) } )
6 elsni 3661 . . . . . . . . 9  |-  ( x  e.  { (/) }  ->  x  =  (/) )
75, 6syl 14 . . . . . . . 8  |-  ( ( ( A  C_  { (/) }  /\  A  =/=  { (/)
} )  /\  x  e.  A )  ->  x  =  (/) )
8 simpr 110 . . . . . . . 8  |-  ( ( ( A  C_  { (/) }  /\  A  =/=  { (/)
} )  /\  x  e.  A )  ->  x  e.  A )
97, 8eqeltrrd 2285 . . . . . . 7  |-  ( ( ( A  C_  { (/) }  /\  A  =/=  { (/)
} )  /\  x  e.  A )  ->  (/)  e.  A
)
109snssd 3789 . . . . . 6  |-  ( ( ( A  C_  { (/) }  /\  A  =/=  { (/)
} )  /\  x  e.  A )  ->  { (/) } 
C_  A )
113, 10eqssd 3218 . . . . 5  |-  ( ( ( A  C_  { (/) }  /\  A  =/=  { (/)
} )  /\  x  e.  A )  ->  A  =  { (/) } )
1211ex 115 . . . 4  |-  ( ( A  C_  { (/) }  /\  A  =/=  { (/) } )  ->  ( x  e.  A  ->  A  =  { (/) } ) )
1312exlimdv 1843 . . 3  |-  ( ( A  C_  { (/) }  /\  A  =/=  { (/) } )  ->  ( E. x  x  e.  A  ->  A  =  { (/) } ) )
142, 13mtod 665 . 2  |-  ( ( A  C_  { (/) }  /\  A  =/=  { (/) } )  ->  -.  E. x  x  e.  A )
15 notm0 3489 . 2  |-  ( -. 
E. x  x  e.  A  <->  A  =  (/) )
1614, 15sylib 122 1  |-  ( ( A  C_  { (/) }  /\  A  =/=  { (/) } )  ->  A  =  (/) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    = wceq 1373   E.wex 1516    e. wcel 2178    =/= wne 2378    C_ wss 3174   (/)c0 3468   {csn 3643
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-v 2778  df-dif 3176  df-in 3180  df-ss 3187  df-nul 3469  df-sn 3649
This theorem is referenced by:  exmid1dc  4260  exmid1stab  4268
  Copyright terms: Public domain W3C validator