ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pwntru Unicode version

Theorem pwntru 4185
Description: A slight strengthening of pwtrufal 14030. (Contributed by Mario Carneiro and Jim Kingdon, 12-Sep-2023.)
Assertion
Ref Expression
pwntru  |-  ( ( A  C_  { (/) }  /\  A  =/=  { (/) } )  ->  A  =  (/) )

Proof of Theorem pwntru
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 simpr 109 . . . 4  |-  ( ( A  C_  { (/) }  /\  A  =/=  { (/) } )  ->  A  =/=  { (/)
} )
21neneqd 2361 . . 3  |-  ( ( A  C_  { (/) }  /\  A  =/=  { (/) } )  ->  -.  A  =  { (/) } )
3 simpll 524 . . . . . 6  |-  ( ( ( A  C_  { (/) }  /\  A  =/=  { (/)
} )  /\  x  e.  A )  ->  A  C_ 
{ (/) } )
4 simpl 108 . . . . . . . . . 10  |-  ( ( A  C_  { (/) }  /\  A  =/=  { (/) } )  ->  A  C_  { (/) } )
54sselda 3147 . . . . . . . . 9  |-  ( ( ( A  C_  { (/) }  /\  A  =/=  { (/)
} )  /\  x  e.  A )  ->  x  e.  { (/) } )
6 elsni 3601 . . . . . . . . 9  |-  ( x  e.  { (/) }  ->  x  =  (/) )
75, 6syl 14 . . . . . . . 8  |-  ( ( ( A  C_  { (/) }  /\  A  =/=  { (/)
} )  /\  x  e.  A )  ->  x  =  (/) )
8 simpr 109 . . . . . . . 8  |-  ( ( ( A  C_  { (/) }  /\  A  =/=  { (/)
} )  /\  x  e.  A )  ->  x  e.  A )
97, 8eqeltrrd 2248 . . . . . . 7  |-  ( ( ( A  C_  { (/) }  /\  A  =/=  { (/)
} )  /\  x  e.  A )  ->  (/)  e.  A
)
109snssd 3725 . . . . . 6  |-  ( ( ( A  C_  { (/) }  /\  A  =/=  { (/)
} )  /\  x  e.  A )  ->  { (/) } 
C_  A )
113, 10eqssd 3164 . . . . 5  |-  ( ( ( A  C_  { (/) }  /\  A  =/=  { (/)
} )  /\  x  e.  A )  ->  A  =  { (/) } )
1211ex 114 . . . 4  |-  ( ( A  C_  { (/) }  /\  A  =/=  { (/) } )  ->  ( x  e.  A  ->  A  =  { (/) } ) )
1312exlimdv 1812 . . 3  |-  ( ( A  C_  { (/) }  /\  A  =/=  { (/) } )  ->  ( E. x  x  e.  A  ->  A  =  { (/) } ) )
142, 13mtod 658 . 2  |-  ( ( A  C_  { (/) }  /\  A  =/=  { (/) } )  ->  -.  E. x  x  e.  A )
15 notm0 3435 . 2  |-  ( -. 
E. x  x  e.  A  <->  A  =  (/) )
1614, 15sylib 121 1  |-  ( ( A  C_  { (/) }  /\  A  =/=  { (/) } )  ->  A  =  (/) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    = wceq 1348   E.wex 1485    e. wcel 2141    =/= wne 2340    C_ wss 3121   (/)c0 3414   {csn 3583
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-v 2732  df-dif 3123  df-in 3127  df-ss 3134  df-nul 3415  df-sn 3589
This theorem is referenced by:  exmid1dc  4186  exmid1stab  14033
  Copyright terms: Public domain W3C validator