Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  pwtrufal Unicode version

Theorem pwtrufal 16136
Description: A subset of the singleton  { (/) } cannot be anything other than  (/) or  { (/) }. Removing the double negation would change the meaning, as seen at exmid01 4258. If we view a subset of a singleton as a truth value (as seen in theorems like exmidexmid 4256), then this theorem states there are no truth values other than true and false, as described in section 1.1 of [Bauer], p. 481. (Contributed by Mario Carneiro and Jim Kingdon, 11-Sep-2023.)
Assertion
Ref Expression
pwtrufal  |-  ( A 
C_  { (/) }  ->  -. 
-.  ( A  =  (/)  \/  A  =  { (/)
} ) )

Proof of Theorem pwtrufal
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 simprr 531 . . . . 5  |-  ( ( A  C_  { (/) }  /\  ( -.  A  =  (/) 
/\  -.  A  =  { (/) } ) )  ->  -.  A  =  { (/) } )
2 simpll 527 . . . . . . . 8  |-  ( ( ( A  C_  { (/) }  /\  ( -.  A  =  (/)  /\  -.  A  =  { (/) } ) )  /\  x  e.  A
)  ->  A  C_  { (/) } )
3 simpl 109 . . . . . . . . . . . 12  |-  ( ( A  C_  { (/) }  /\  ( -.  A  =  (/) 
/\  -.  A  =  { (/) } ) )  ->  A  C_  { (/) } )
43sselda 3201 . . . . . . . . . . 11  |-  ( ( ( A  C_  { (/) }  /\  ( -.  A  =  (/)  /\  -.  A  =  { (/) } ) )  /\  x  e.  A
)  ->  x  e.  {
(/) } )
5 elsni 3661 . . . . . . . . . . 11  |-  ( x  e.  { (/) }  ->  x  =  (/) )
64, 5syl 14 . . . . . . . . . 10  |-  ( ( ( A  C_  { (/) }  /\  ( -.  A  =  (/)  /\  -.  A  =  { (/) } ) )  /\  x  e.  A
)  ->  x  =  (/) )
7 simpr 110 . . . . . . . . . 10  |-  ( ( ( A  C_  { (/) }  /\  ( -.  A  =  (/)  /\  -.  A  =  { (/) } ) )  /\  x  e.  A
)  ->  x  e.  A )
86, 7eqeltrrd 2285 . . . . . . . . 9  |-  ( ( ( A  C_  { (/) }  /\  ( -.  A  =  (/)  /\  -.  A  =  { (/) } ) )  /\  x  e.  A
)  ->  (/)  e.  A
)
98snssd 3789 . . . . . . . 8  |-  ( ( ( A  C_  { (/) }  /\  ( -.  A  =  (/)  /\  -.  A  =  { (/) } ) )  /\  x  e.  A
)  ->  { (/) }  C_  A )
102, 9eqssd 3218 . . . . . . 7  |-  ( ( ( A  C_  { (/) }  /\  ( -.  A  =  (/)  /\  -.  A  =  { (/) } ) )  /\  x  e.  A
)  ->  A  =  { (/) } )
1110ex 115 . . . . . 6  |-  ( ( A  C_  { (/) }  /\  ( -.  A  =  (/) 
/\  -.  A  =  { (/) } ) )  ->  ( x  e.  A  ->  A  =  { (/) } ) )
1211exlimdv 1843 . . . . 5  |-  ( ( A  C_  { (/) }  /\  ( -.  A  =  (/) 
/\  -.  A  =  { (/) } ) )  ->  ( E. x  x  e.  A  ->  A  =  { (/) } ) )
131, 12mtod 665 . . . 4  |-  ( ( A  C_  { (/) }  /\  ( -.  A  =  (/) 
/\  -.  A  =  { (/) } ) )  ->  -.  E. x  x  e.  A )
14 notm0 3489 . . . 4  |-  ( -. 
E. x  x  e.  A  <->  A  =  (/) )
1513, 14sylib 122 . . 3  |-  ( ( A  C_  { (/) }  /\  ( -.  A  =  (/) 
/\  -.  A  =  { (/) } ) )  ->  A  =  (/) )
16 simprl 529 . . 3  |-  ( ( A  C_  { (/) }  /\  ( -.  A  =  (/) 
/\  -.  A  =  { (/) } ) )  ->  -.  A  =  (/) )
1715, 16pm2.65da 663 . 2  |-  ( A 
C_  { (/) }  ->  -.  ( -.  A  =  (/)  /\  -.  A  =  { (/) } ) )
18 ioran 754 . 2  |-  ( -.  ( A  =  (/)  \/  A  =  { (/) } )  <->  ( -.  A  =  (/)  /\  -.  A  =  { (/) } ) )
1917, 18sylnibr 679 1  |-  ( A 
C_  { (/) }  ->  -. 
-.  ( A  =  (/)  \/  A  =  { (/)
} ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    \/ wo 710    = wceq 1373   E.wex 1516    e. wcel 2178    C_ wss 3174   (/)c0 3468   {csn 3643
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-v 2778  df-dif 3176  df-in 3180  df-ss 3187  df-nul 3469  df-sn 3649
This theorem is referenced by:  pwle2  16137
  Copyright terms: Public domain W3C validator