| Mathbox for Jim Kingdon |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > pwtrufal | Unicode version | ||
| Description: A subset of the singleton
|
| Ref | Expression |
|---|---|
| pwtrufal |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simprr 531 |
. . . . 5
| |
| 2 | simpll 527 |
. . . . . . . 8
| |
| 3 | simpl 109 |
. . . . . . . . . . . 12
| |
| 4 | 3 | sselda 3193 |
. . . . . . . . . . 11
|
| 5 | elsni 3651 |
. . . . . . . . . . 11
| |
| 6 | 4, 5 | syl 14 |
. . . . . . . . . 10
|
| 7 | simpr 110 |
. . . . . . . . . 10
| |
| 8 | 6, 7 | eqeltrrd 2283 |
. . . . . . . . 9
|
| 9 | 8 | snssd 3778 |
. . . . . . . 8
|
| 10 | 2, 9 | eqssd 3210 |
. . . . . . 7
|
| 11 | 10 | ex 115 |
. . . . . 6
|
| 12 | 11 | exlimdv 1842 |
. . . . 5
|
| 13 | 1, 12 | mtod 665 |
. . . 4
|
| 14 | notm0 3481 |
. . . 4
| |
| 15 | 13, 14 | sylib 122 |
. . 3
|
| 16 | simprl 529 |
. . 3
| |
| 17 | 15, 16 | pm2.65da 663 |
. 2
|
| 18 | ioran 754 |
. 2
| |
| 19 | 17, 18 | sylnibr 679 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-v 2774 df-dif 3168 df-in 3172 df-ss 3179 df-nul 3461 df-sn 3639 |
| This theorem is referenced by: pwle2 15935 |
| Copyright terms: Public domain | W3C validator |