| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pwntru | GIF version | ||
| Description: A slight strengthening of pwtrufal 15642. (Contributed by Mario Carneiro and Jim Kingdon, 12-Sep-2023.) |
| Ref | Expression |
|---|---|
| pwntru | ⊢ ((𝐴 ⊆ {∅} ∧ 𝐴 ≠ {∅}) → 𝐴 = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 110 | . . . 4 ⊢ ((𝐴 ⊆ {∅} ∧ 𝐴 ≠ {∅}) → 𝐴 ≠ {∅}) | |
| 2 | 1 | neneqd 2388 | . . 3 ⊢ ((𝐴 ⊆ {∅} ∧ 𝐴 ≠ {∅}) → ¬ 𝐴 = {∅}) |
| 3 | simpll 527 | . . . . . 6 ⊢ (((𝐴 ⊆ {∅} ∧ 𝐴 ≠ {∅}) ∧ 𝑥 ∈ 𝐴) → 𝐴 ⊆ {∅}) | |
| 4 | simpl 109 | . . . . . . . . . 10 ⊢ ((𝐴 ⊆ {∅} ∧ 𝐴 ≠ {∅}) → 𝐴 ⊆ {∅}) | |
| 5 | 4 | sselda 3183 | . . . . . . . . 9 ⊢ (((𝐴 ⊆ {∅} ∧ 𝐴 ≠ {∅}) ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ {∅}) |
| 6 | elsni 3640 | . . . . . . . . 9 ⊢ (𝑥 ∈ {∅} → 𝑥 = ∅) | |
| 7 | 5, 6 | syl 14 | . . . . . . . 8 ⊢ (((𝐴 ⊆ {∅} ∧ 𝐴 ≠ {∅}) ∧ 𝑥 ∈ 𝐴) → 𝑥 = ∅) |
| 8 | simpr 110 | . . . . . . . 8 ⊢ (((𝐴 ⊆ {∅} ∧ 𝐴 ≠ {∅}) ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐴) | |
| 9 | 7, 8 | eqeltrrd 2274 | . . . . . . 7 ⊢ (((𝐴 ⊆ {∅} ∧ 𝐴 ≠ {∅}) ∧ 𝑥 ∈ 𝐴) → ∅ ∈ 𝐴) |
| 10 | 9 | snssd 3767 | . . . . . 6 ⊢ (((𝐴 ⊆ {∅} ∧ 𝐴 ≠ {∅}) ∧ 𝑥 ∈ 𝐴) → {∅} ⊆ 𝐴) |
| 11 | 3, 10 | eqssd 3200 | . . . . 5 ⊢ (((𝐴 ⊆ {∅} ∧ 𝐴 ≠ {∅}) ∧ 𝑥 ∈ 𝐴) → 𝐴 = {∅}) |
| 12 | 11 | ex 115 | . . . 4 ⊢ ((𝐴 ⊆ {∅} ∧ 𝐴 ≠ {∅}) → (𝑥 ∈ 𝐴 → 𝐴 = {∅})) |
| 13 | 12 | exlimdv 1833 | . . 3 ⊢ ((𝐴 ⊆ {∅} ∧ 𝐴 ≠ {∅}) → (∃𝑥 𝑥 ∈ 𝐴 → 𝐴 = {∅})) |
| 14 | 2, 13 | mtod 664 | . 2 ⊢ ((𝐴 ⊆ {∅} ∧ 𝐴 ≠ {∅}) → ¬ ∃𝑥 𝑥 ∈ 𝐴) |
| 15 | notm0 3471 | . 2 ⊢ (¬ ∃𝑥 𝑥 ∈ 𝐴 ↔ 𝐴 = ∅) | |
| 16 | 14, 15 | sylib 122 | 1 ⊢ ((𝐴 ⊆ {∅} ∧ 𝐴 ≠ {∅}) → 𝐴 = ∅) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 = wceq 1364 ∃wex 1506 ∈ wcel 2167 ≠ wne 2367 ⊆ wss 3157 ∅c0 3450 {csn 3622 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-v 2765 df-dif 3159 df-in 3163 df-ss 3170 df-nul 3451 df-sn 3628 |
| This theorem is referenced by: exmid1dc 4233 exmid1stab 4241 |
| Copyright terms: Public domain | W3C validator |