ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pwntru GIF version

Theorem pwntru 4178
Description: A slight strengthening of pwtrufal 13877. (Contributed by Mario Carneiro and Jim Kingdon, 12-Sep-2023.)
Assertion
Ref Expression
pwntru ((𝐴 ⊆ {∅} ∧ 𝐴 ≠ {∅}) → 𝐴 = ∅)

Proof of Theorem pwntru
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simpr 109 . . . 4 ((𝐴 ⊆ {∅} ∧ 𝐴 ≠ {∅}) → 𝐴 ≠ {∅})
21neneqd 2357 . . 3 ((𝐴 ⊆ {∅} ∧ 𝐴 ≠ {∅}) → ¬ 𝐴 = {∅})
3 simpll 519 . . . . . 6 (((𝐴 ⊆ {∅} ∧ 𝐴 ≠ {∅}) ∧ 𝑥𝐴) → 𝐴 ⊆ {∅})
4 simpl 108 . . . . . . . . . 10 ((𝐴 ⊆ {∅} ∧ 𝐴 ≠ {∅}) → 𝐴 ⊆ {∅})
54sselda 3142 . . . . . . . . 9 (((𝐴 ⊆ {∅} ∧ 𝐴 ≠ {∅}) ∧ 𝑥𝐴) → 𝑥 ∈ {∅})
6 elsni 3594 . . . . . . . . 9 (𝑥 ∈ {∅} → 𝑥 = ∅)
75, 6syl 14 . . . . . . . 8 (((𝐴 ⊆ {∅} ∧ 𝐴 ≠ {∅}) ∧ 𝑥𝐴) → 𝑥 = ∅)
8 simpr 109 . . . . . . . 8 (((𝐴 ⊆ {∅} ∧ 𝐴 ≠ {∅}) ∧ 𝑥𝐴) → 𝑥𝐴)
97, 8eqeltrrd 2244 . . . . . . 7 (((𝐴 ⊆ {∅} ∧ 𝐴 ≠ {∅}) ∧ 𝑥𝐴) → ∅ ∈ 𝐴)
109snssd 3718 . . . . . 6 (((𝐴 ⊆ {∅} ∧ 𝐴 ≠ {∅}) ∧ 𝑥𝐴) → {∅} ⊆ 𝐴)
113, 10eqssd 3159 . . . . 5 (((𝐴 ⊆ {∅} ∧ 𝐴 ≠ {∅}) ∧ 𝑥𝐴) → 𝐴 = {∅})
1211ex 114 . . . 4 ((𝐴 ⊆ {∅} ∧ 𝐴 ≠ {∅}) → (𝑥𝐴𝐴 = {∅}))
1312exlimdv 1807 . . 3 ((𝐴 ⊆ {∅} ∧ 𝐴 ≠ {∅}) → (∃𝑥 𝑥𝐴𝐴 = {∅}))
142, 13mtod 653 . 2 ((𝐴 ⊆ {∅} ∧ 𝐴 ≠ {∅}) → ¬ ∃𝑥 𝑥𝐴)
15 notm0 3429 . 2 (¬ ∃𝑥 𝑥𝐴𝐴 = ∅)
1614, 15sylib 121 1 ((𝐴 ⊆ {∅} ∧ 𝐴 ≠ {∅}) → 𝐴 = ∅)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103   = wceq 1343  wex 1480  wcel 2136  wne 2336  wss 3116  c0 3409  {csn 3576
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-v 2728  df-dif 3118  df-in 3122  df-ss 3129  df-nul 3410  df-sn 3582
This theorem is referenced by:  exmid1dc  4179  exmid1stab  13880
  Copyright terms: Public domain W3C validator