| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pwntru | GIF version | ||
| Description: A slight strengthening of pwtrufal 16069. (Contributed by Mario Carneiro and Jim Kingdon, 12-Sep-2023.) |
| Ref | Expression |
|---|---|
| pwntru | ⊢ ((𝐴 ⊆ {∅} ∧ 𝐴 ≠ {∅}) → 𝐴 = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 110 | . . . 4 ⊢ ((𝐴 ⊆ {∅} ∧ 𝐴 ≠ {∅}) → 𝐴 ≠ {∅}) | |
| 2 | 1 | neneqd 2398 | . . 3 ⊢ ((𝐴 ⊆ {∅} ∧ 𝐴 ≠ {∅}) → ¬ 𝐴 = {∅}) |
| 3 | simpll 527 | . . . . . 6 ⊢ (((𝐴 ⊆ {∅} ∧ 𝐴 ≠ {∅}) ∧ 𝑥 ∈ 𝐴) → 𝐴 ⊆ {∅}) | |
| 4 | simpl 109 | . . . . . . . . . 10 ⊢ ((𝐴 ⊆ {∅} ∧ 𝐴 ≠ {∅}) → 𝐴 ⊆ {∅}) | |
| 5 | 4 | sselda 3197 | . . . . . . . . 9 ⊢ (((𝐴 ⊆ {∅} ∧ 𝐴 ≠ {∅}) ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ {∅}) |
| 6 | elsni 3655 | . . . . . . . . 9 ⊢ (𝑥 ∈ {∅} → 𝑥 = ∅) | |
| 7 | 5, 6 | syl 14 | . . . . . . . 8 ⊢ (((𝐴 ⊆ {∅} ∧ 𝐴 ≠ {∅}) ∧ 𝑥 ∈ 𝐴) → 𝑥 = ∅) |
| 8 | simpr 110 | . . . . . . . 8 ⊢ (((𝐴 ⊆ {∅} ∧ 𝐴 ≠ {∅}) ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐴) | |
| 9 | 7, 8 | eqeltrrd 2284 | . . . . . . 7 ⊢ (((𝐴 ⊆ {∅} ∧ 𝐴 ≠ {∅}) ∧ 𝑥 ∈ 𝐴) → ∅ ∈ 𝐴) |
| 10 | 9 | snssd 3783 | . . . . . 6 ⊢ (((𝐴 ⊆ {∅} ∧ 𝐴 ≠ {∅}) ∧ 𝑥 ∈ 𝐴) → {∅} ⊆ 𝐴) |
| 11 | 3, 10 | eqssd 3214 | . . . . 5 ⊢ (((𝐴 ⊆ {∅} ∧ 𝐴 ≠ {∅}) ∧ 𝑥 ∈ 𝐴) → 𝐴 = {∅}) |
| 12 | 11 | ex 115 | . . . 4 ⊢ ((𝐴 ⊆ {∅} ∧ 𝐴 ≠ {∅}) → (𝑥 ∈ 𝐴 → 𝐴 = {∅})) |
| 13 | 12 | exlimdv 1843 | . . 3 ⊢ ((𝐴 ⊆ {∅} ∧ 𝐴 ≠ {∅}) → (∃𝑥 𝑥 ∈ 𝐴 → 𝐴 = {∅})) |
| 14 | 2, 13 | mtod 665 | . 2 ⊢ ((𝐴 ⊆ {∅} ∧ 𝐴 ≠ {∅}) → ¬ ∃𝑥 𝑥 ∈ 𝐴) |
| 15 | notm0 3485 | . 2 ⊢ (¬ ∃𝑥 𝑥 ∈ 𝐴 ↔ 𝐴 = ∅) | |
| 16 | 14, 15 | sylib 122 | 1 ⊢ ((𝐴 ⊆ {∅} ∧ 𝐴 ≠ {∅}) → 𝐴 = ∅) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 = wceq 1373 ∃wex 1516 ∈ wcel 2177 ≠ wne 2377 ⊆ wss 3170 ∅c0 3464 {csn 3637 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-v 2775 df-dif 3172 df-in 3176 df-ss 3183 df-nul 3465 df-sn 3643 |
| This theorem is referenced by: exmid1dc 4251 exmid1stab 4259 |
| Copyright terms: Public domain | W3C validator |