ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pwntru GIF version

Theorem pwntru 4122
Description: A slight strengthening of pwtrufal 13192. (Contributed by Mario Carneiro and Jim Kingdon, 12-Sep-2023.)
Assertion
Ref Expression
pwntru ((𝐴 ⊆ {∅} ∧ 𝐴 ≠ {∅}) → 𝐴 = ∅)

Proof of Theorem pwntru
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simpr 109 . . . 4 ((𝐴 ⊆ {∅} ∧ 𝐴 ≠ {∅}) → 𝐴 ≠ {∅})
21neneqd 2329 . . 3 ((𝐴 ⊆ {∅} ∧ 𝐴 ≠ {∅}) → ¬ 𝐴 = {∅})
3 simpll 518 . . . . . 6 (((𝐴 ⊆ {∅} ∧ 𝐴 ≠ {∅}) ∧ 𝑥𝐴) → 𝐴 ⊆ {∅})
4 simpl 108 . . . . . . . . . 10 ((𝐴 ⊆ {∅} ∧ 𝐴 ≠ {∅}) → 𝐴 ⊆ {∅})
54sselda 3097 . . . . . . . . 9 (((𝐴 ⊆ {∅} ∧ 𝐴 ≠ {∅}) ∧ 𝑥𝐴) → 𝑥 ∈ {∅})
6 elsni 3545 . . . . . . . . 9 (𝑥 ∈ {∅} → 𝑥 = ∅)
75, 6syl 14 . . . . . . . 8 (((𝐴 ⊆ {∅} ∧ 𝐴 ≠ {∅}) ∧ 𝑥𝐴) → 𝑥 = ∅)
8 simpr 109 . . . . . . . 8 (((𝐴 ⊆ {∅} ∧ 𝐴 ≠ {∅}) ∧ 𝑥𝐴) → 𝑥𝐴)
97, 8eqeltrrd 2217 . . . . . . 7 (((𝐴 ⊆ {∅} ∧ 𝐴 ≠ {∅}) ∧ 𝑥𝐴) → ∅ ∈ 𝐴)
109snssd 3665 . . . . . 6 (((𝐴 ⊆ {∅} ∧ 𝐴 ≠ {∅}) ∧ 𝑥𝐴) → {∅} ⊆ 𝐴)
113, 10eqssd 3114 . . . . 5 (((𝐴 ⊆ {∅} ∧ 𝐴 ≠ {∅}) ∧ 𝑥𝐴) → 𝐴 = {∅})
1211ex 114 . . . 4 ((𝐴 ⊆ {∅} ∧ 𝐴 ≠ {∅}) → (𝑥𝐴𝐴 = {∅}))
1312exlimdv 1791 . . 3 ((𝐴 ⊆ {∅} ∧ 𝐴 ≠ {∅}) → (∃𝑥 𝑥𝐴𝐴 = {∅}))
142, 13mtod 652 . 2 ((𝐴 ⊆ {∅} ∧ 𝐴 ≠ {∅}) → ¬ ∃𝑥 𝑥𝐴)
15 notm0 3383 . 2 (¬ ∃𝑥 𝑥𝐴𝐴 = ∅)
1614, 15sylib 121 1 ((𝐴 ⊆ {∅} ∧ 𝐴 ≠ {∅}) → 𝐴 = ∅)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103   = wceq 1331  wex 1468  wcel 1480  wne 2308  wss 3071  c0 3363  {csn 3527
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121
This theorem depends on definitions:  df-bi 116  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-v 2688  df-dif 3073  df-in 3077  df-ss 3084  df-nul 3364  df-sn 3533
This theorem is referenced by:  exmid1dc  4123  exmid1stab  13195
  Copyright terms: Public domain W3C validator