| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pwntru | GIF version | ||
| Description: A slight strengthening of pwtrufal 16322. (Contributed by Mario Carneiro and Jim Kingdon, 12-Sep-2023.) |
| Ref | Expression |
|---|---|
| pwntru | ⊢ ((𝐴 ⊆ {∅} ∧ 𝐴 ≠ {∅}) → 𝐴 = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 110 | . . . 4 ⊢ ((𝐴 ⊆ {∅} ∧ 𝐴 ≠ {∅}) → 𝐴 ≠ {∅}) | |
| 2 | 1 | neneqd 2421 | . . 3 ⊢ ((𝐴 ⊆ {∅} ∧ 𝐴 ≠ {∅}) → ¬ 𝐴 = {∅}) |
| 3 | simpll 527 | . . . . . 6 ⊢ (((𝐴 ⊆ {∅} ∧ 𝐴 ≠ {∅}) ∧ 𝑥 ∈ 𝐴) → 𝐴 ⊆ {∅}) | |
| 4 | simpl 109 | . . . . . . . . . 10 ⊢ ((𝐴 ⊆ {∅} ∧ 𝐴 ≠ {∅}) → 𝐴 ⊆ {∅}) | |
| 5 | 4 | sselda 3224 | . . . . . . . . 9 ⊢ (((𝐴 ⊆ {∅} ∧ 𝐴 ≠ {∅}) ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ {∅}) |
| 6 | elsni 3684 | . . . . . . . . 9 ⊢ (𝑥 ∈ {∅} → 𝑥 = ∅) | |
| 7 | 5, 6 | syl 14 | . . . . . . . 8 ⊢ (((𝐴 ⊆ {∅} ∧ 𝐴 ≠ {∅}) ∧ 𝑥 ∈ 𝐴) → 𝑥 = ∅) |
| 8 | simpr 110 | . . . . . . . 8 ⊢ (((𝐴 ⊆ {∅} ∧ 𝐴 ≠ {∅}) ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐴) | |
| 9 | 7, 8 | eqeltrrd 2307 | . . . . . . 7 ⊢ (((𝐴 ⊆ {∅} ∧ 𝐴 ≠ {∅}) ∧ 𝑥 ∈ 𝐴) → ∅ ∈ 𝐴) |
| 10 | 9 | snssd 3812 | . . . . . 6 ⊢ (((𝐴 ⊆ {∅} ∧ 𝐴 ≠ {∅}) ∧ 𝑥 ∈ 𝐴) → {∅} ⊆ 𝐴) |
| 11 | 3, 10 | eqssd 3241 | . . . . 5 ⊢ (((𝐴 ⊆ {∅} ∧ 𝐴 ≠ {∅}) ∧ 𝑥 ∈ 𝐴) → 𝐴 = {∅}) |
| 12 | 11 | ex 115 | . . . 4 ⊢ ((𝐴 ⊆ {∅} ∧ 𝐴 ≠ {∅}) → (𝑥 ∈ 𝐴 → 𝐴 = {∅})) |
| 13 | 12 | exlimdv 1865 | . . 3 ⊢ ((𝐴 ⊆ {∅} ∧ 𝐴 ≠ {∅}) → (∃𝑥 𝑥 ∈ 𝐴 → 𝐴 = {∅})) |
| 14 | 2, 13 | mtod 667 | . 2 ⊢ ((𝐴 ⊆ {∅} ∧ 𝐴 ≠ {∅}) → ¬ ∃𝑥 𝑥 ∈ 𝐴) |
| 15 | notm0 3512 | . 2 ⊢ (¬ ∃𝑥 𝑥 ∈ 𝐴 ↔ 𝐴 = ∅) | |
| 16 | 14, 15 | sylib 122 | 1 ⊢ ((𝐴 ⊆ {∅} ∧ 𝐴 ≠ {∅}) → 𝐴 = ∅) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 = wceq 1395 ∃wex 1538 ∈ wcel 2200 ≠ wne 2400 ⊆ wss 3197 ∅c0 3491 {csn 3666 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-v 2801 df-dif 3199 df-in 3203 df-ss 3210 df-nul 3492 df-sn 3672 |
| This theorem is referenced by: exmid1dc 4283 exmid1stab 4291 |
| Copyright terms: Public domain | W3C validator |