ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pwunss GIF version

Theorem pwunss 4243
Description: The power class of the union of two classes includes the union of their power classes. Exercise 4.12(k) of [Mendelson] p. 235. (Contributed by NM, 23-Nov-2003.)
Assertion
Ref Expression
pwunss (𝒫 𝐴 ∪ 𝒫 𝐵) ⊆ 𝒫 (𝐴𝐵)

Proof of Theorem pwunss
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ssun 3286 . . 3 ((𝑥𝐴𝑥𝐵) → 𝑥 ⊆ (𝐴𝐵))
2 elun 3248 . . . 4 (𝑥 ∈ (𝒫 𝐴 ∪ 𝒫 𝐵) ↔ (𝑥 ∈ 𝒫 𝐴𝑥 ∈ 𝒫 𝐵))
3 vex 2715 . . . . . 6 𝑥 ∈ V
43elpw 3549 . . . . 5 (𝑥 ∈ 𝒫 𝐴𝑥𝐴)
53elpw 3549 . . . . 5 (𝑥 ∈ 𝒫 𝐵𝑥𝐵)
64, 5orbi12i 754 . . . 4 ((𝑥 ∈ 𝒫 𝐴𝑥 ∈ 𝒫 𝐵) ↔ (𝑥𝐴𝑥𝐵))
72, 6bitri 183 . . 3 (𝑥 ∈ (𝒫 𝐴 ∪ 𝒫 𝐵) ↔ (𝑥𝐴𝑥𝐵))
83elpw 3549 . . 3 (𝑥 ∈ 𝒫 (𝐴𝐵) ↔ 𝑥 ⊆ (𝐴𝐵))
91, 7, 83imtr4i 200 . 2 (𝑥 ∈ (𝒫 𝐴 ∪ 𝒫 𝐵) → 𝑥 ∈ 𝒫 (𝐴𝐵))
109ssriv 3132 1 (𝒫 𝐴 ∪ 𝒫 𝐵) ⊆ 𝒫 (𝐴𝐵)
Colors of variables: wff set class
Syntax hints:  wo 698  wcel 2128  cun 3100  wss 3102  𝒫 cpw 3543
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2139
This theorem depends on definitions:  df-bi 116  df-tru 1338  df-nf 1441  df-sb 1743  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-v 2714  df-un 3106  df-in 3108  df-ss 3115  df-pw 3545
This theorem is referenced by:  pwundifss  4245  pwunim  4246
  Copyright terms: Public domain W3C validator