Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > pwunss | GIF version |
Description: The power class of the union of two classes includes the union of their power classes. Exercise 4.12(k) of [Mendelson] p. 235. (Contributed by NM, 23-Nov-2003.) |
Ref | Expression |
---|---|
pwunss | ⊢ (𝒫 𝐴 ∪ 𝒫 𝐵) ⊆ 𝒫 (𝐴 ∪ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssun 3301 | . . 3 ⊢ ((𝑥 ⊆ 𝐴 ∨ 𝑥 ⊆ 𝐵) → 𝑥 ⊆ (𝐴 ∪ 𝐵)) | |
2 | elun 3263 | . . . 4 ⊢ (𝑥 ∈ (𝒫 𝐴 ∪ 𝒫 𝐵) ↔ (𝑥 ∈ 𝒫 𝐴 ∨ 𝑥 ∈ 𝒫 𝐵)) | |
3 | vex 2729 | . . . . . 6 ⊢ 𝑥 ∈ V | |
4 | 3 | elpw 3565 | . . . . 5 ⊢ (𝑥 ∈ 𝒫 𝐴 ↔ 𝑥 ⊆ 𝐴) |
5 | 3 | elpw 3565 | . . . . 5 ⊢ (𝑥 ∈ 𝒫 𝐵 ↔ 𝑥 ⊆ 𝐵) |
6 | 4, 5 | orbi12i 754 | . . . 4 ⊢ ((𝑥 ∈ 𝒫 𝐴 ∨ 𝑥 ∈ 𝒫 𝐵) ↔ (𝑥 ⊆ 𝐴 ∨ 𝑥 ⊆ 𝐵)) |
7 | 2, 6 | bitri 183 | . . 3 ⊢ (𝑥 ∈ (𝒫 𝐴 ∪ 𝒫 𝐵) ↔ (𝑥 ⊆ 𝐴 ∨ 𝑥 ⊆ 𝐵)) |
8 | 3 | elpw 3565 | . . 3 ⊢ (𝑥 ∈ 𝒫 (𝐴 ∪ 𝐵) ↔ 𝑥 ⊆ (𝐴 ∪ 𝐵)) |
9 | 1, 7, 8 | 3imtr4i 200 | . 2 ⊢ (𝑥 ∈ (𝒫 𝐴 ∪ 𝒫 𝐵) → 𝑥 ∈ 𝒫 (𝐴 ∪ 𝐵)) |
10 | 9 | ssriv 3146 | 1 ⊢ (𝒫 𝐴 ∪ 𝒫 𝐵) ⊆ 𝒫 (𝐴 ∪ 𝐵) |
Colors of variables: wff set class |
Syntax hints: ∨ wo 698 ∈ wcel 2136 ∪ cun 3114 ⊆ wss 3116 𝒫 cpw 3559 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 |
This theorem is referenced by: pwundifss 4263 pwunim 4264 |
Copyright terms: Public domain | W3C validator |