ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pwunss GIF version

Theorem pwunss 4318
Description: The power class of the union of two classes includes the union of their power classes. Exercise 4.12(k) of [Mendelson] p. 235. (Contributed by NM, 23-Nov-2003.)
Assertion
Ref Expression
pwunss (𝒫 𝐴 ∪ 𝒫 𝐵) ⊆ 𝒫 (𝐴𝐵)

Proof of Theorem pwunss
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ssun 3342 . . 3 ((𝑥𝐴𝑥𝐵) → 𝑥 ⊆ (𝐴𝐵))
2 elun 3304 . . . 4 (𝑥 ∈ (𝒫 𝐴 ∪ 𝒫 𝐵) ↔ (𝑥 ∈ 𝒫 𝐴𝑥 ∈ 𝒫 𝐵))
3 vex 2766 . . . . . 6 𝑥 ∈ V
43elpw 3611 . . . . 5 (𝑥 ∈ 𝒫 𝐴𝑥𝐴)
53elpw 3611 . . . . 5 (𝑥 ∈ 𝒫 𝐵𝑥𝐵)
64, 5orbi12i 765 . . . 4 ((𝑥 ∈ 𝒫 𝐴𝑥 ∈ 𝒫 𝐵) ↔ (𝑥𝐴𝑥𝐵))
72, 6bitri 184 . . 3 (𝑥 ∈ (𝒫 𝐴 ∪ 𝒫 𝐵) ↔ (𝑥𝐴𝑥𝐵))
83elpw 3611 . . 3 (𝑥 ∈ 𝒫 (𝐴𝐵) ↔ 𝑥 ⊆ (𝐴𝐵))
91, 7, 83imtr4i 201 . 2 (𝑥 ∈ (𝒫 𝐴 ∪ 𝒫 𝐵) → 𝑥 ∈ 𝒫 (𝐴𝐵))
109ssriv 3187 1 (𝒫 𝐴 ∪ 𝒫 𝐵) ⊆ 𝒫 (𝐴𝐵)
Colors of variables: wff set class
Syntax hints:  wo 709  wcel 2167  cun 3155  wss 3157  𝒫 cpw 3605
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607
This theorem is referenced by:  pwundifss  4320  pwunim  4321
  Copyright terms: Public domain W3C validator