| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pwunss | GIF version | ||
| Description: The power class of the union of two classes includes the union of their power classes. Exercise 4.12(k) of [Mendelson] p. 235. (Contributed by NM, 23-Nov-2003.) |
| Ref | Expression |
|---|---|
| pwunss | ⊢ (𝒫 𝐴 ∪ 𝒫 𝐵) ⊆ 𝒫 (𝐴 ∪ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssun 3342 | . . 3 ⊢ ((𝑥 ⊆ 𝐴 ∨ 𝑥 ⊆ 𝐵) → 𝑥 ⊆ (𝐴 ∪ 𝐵)) | |
| 2 | elun 3304 | . . . 4 ⊢ (𝑥 ∈ (𝒫 𝐴 ∪ 𝒫 𝐵) ↔ (𝑥 ∈ 𝒫 𝐴 ∨ 𝑥 ∈ 𝒫 𝐵)) | |
| 3 | vex 2766 | . . . . . 6 ⊢ 𝑥 ∈ V | |
| 4 | 3 | elpw 3611 | . . . . 5 ⊢ (𝑥 ∈ 𝒫 𝐴 ↔ 𝑥 ⊆ 𝐴) |
| 5 | 3 | elpw 3611 | . . . . 5 ⊢ (𝑥 ∈ 𝒫 𝐵 ↔ 𝑥 ⊆ 𝐵) |
| 6 | 4, 5 | orbi12i 765 | . . . 4 ⊢ ((𝑥 ∈ 𝒫 𝐴 ∨ 𝑥 ∈ 𝒫 𝐵) ↔ (𝑥 ⊆ 𝐴 ∨ 𝑥 ⊆ 𝐵)) |
| 7 | 2, 6 | bitri 184 | . . 3 ⊢ (𝑥 ∈ (𝒫 𝐴 ∪ 𝒫 𝐵) ↔ (𝑥 ⊆ 𝐴 ∨ 𝑥 ⊆ 𝐵)) |
| 8 | 3 | elpw 3611 | . . 3 ⊢ (𝑥 ∈ 𝒫 (𝐴 ∪ 𝐵) ↔ 𝑥 ⊆ (𝐴 ∪ 𝐵)) |
| 9 | 1, 7, 8 | 3imtr4i 201 | . 2 ⊢ (𝑥 ∈ (𝒫 𝐴 ∪ 𝒫 𝐵) → 𝑥 ∈ 𝒫 (𝐴 ∪ 𝐵)) |
| 10 | 9 | ssriv 3187 | 1 ⊢ (𝒫 𝐴 ∪ 𝒫 𝐵) ⊆ 𝒫 (𝐴 ∪ 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: ∨ wo 709 ∈ wcel 2167 ∪ cun 3155 ⊆ wss 3157 𝒫 cpw 3605 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 |
| This theorem is referenced by: pwundifss 4320 pwunim 4321 |
| Copyright terms: Public domain | W3C validator |