ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cc4n Unicode version

Theorem cc4n 7226
Description: Countable choice with a simpler restriction on how every set in the countable collection needs to be inhabited. That is, compared with cc4 7225, the hypotheses only require an A(n) for each value of  n, not a single set  A which suffices for every 
n  e.  om. (Contributed by Mario Carneiro, 7-Apr-2013.) (Revised by Jim Kingdon, 3-May-2024.)
Hypotheses
Ref Expression
cc4n.cc  |-  ( ph  -> CCHOICE )
cc4n.1  |-  ( ph  ->  A. n  e.  N  { x  e.  A  |  ps }  e.  V
)
cc4n.2  |-  ( ph  ->  N  ~~  om )
cc4n.3  |-  ( x  =  ( f `  n )  ->  ( ps 
<->  ch ) )
cc4n.m  |-  ( ph  ->  A. n  e.  N  E. x  e.  A  ps )
Assertion
Ref Expression
cc4n  |-  ( ph  ->  E. f ( f  Fn  N  /\  A. n  e.  N  ch ) )
Distinct variable groups:    A, f, x   
f, N, n    ch, x    ph, f, n    ps, f    x, n
Allowed substitution hints:    ph( x)    ps( x, n)    ch( f, n)    A( n)    N( x)    V( x, f, n)

Proof of Theorem cc4n
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 cc4n.cc . . 3  |-  ( ph  -> CCHOICE )
2 cc4n.1 . . . 4  |-  ( ph  ->  A. n  e.  N  { x  e.  A  |  ps }  e.  V
)
3 elex 2741 . . . . 5  |-  ( { x  e.  A  |  ps }  e.  V  ->  { x  e.  A  |  ps }  e.  _V )
43ralimi 2533 . . . 4  |-  ( A. n  e.  N  {
x  e.  A  |  ps }  e.  V  ->  A. n  e.  N  { x  e.  A  |  ps }  e.  _V )
52, 4syl 14 . . 3  |-  ( ph  ->  A. n  e.  N  { x  e.  A  |  ps }  e.  _V )
6 cc4n.m . . . 4  |-  ( ph  ->  A. n  e.  N  E. x  e.  A  ps )
7 rabn0m 3441 . . . . 5  |-  ( E. w  w  e.  {
x  e.  A  |  ps }  <->  E. x  e.  A  ps )
87ralbii 2476 . . . 4  |-  ( A. n  e.  N  E. w  w  e.  { x  e.  A  |  ps } 
<-> 
A. n  e.  N  E. x  e.  A  ps )
96, 8sylibr 133 . . 3  |-  ( ph  ->  A. n  e.  N  E. w  w  e.  { x  e.  A  |  ps } )
10 cc4n.2 . . 3  |-  ( ph  ->  N  ~~  om )
111, 5, 9, 10cc3 7223 . 2  |-  ( ph  ->  E. f ( f  Fn  N  /\  A. n  e.  N  (
f `  n )  e.  { x  e.  A  |  ps } ) )
12 simprl 526 . . . . 5  |-  ( (
ph  /\  ( f  Fn  N  /\  A. n  e.  N  ( f `  n )  e.  {
x  e.  A  |  ps } ) )  -> 
f  Fn  N )
13 cc4n.3 . . . . . . . . 9  |-  ( x  =  ( f `  n )  ->  ( ps 
<->  ch ) )
1413elrab 2886 . . . . . . . 8  |-  ( ( f `  n )  e.  { x  e.  A  |  ps }  <->  ( ( f `  n
)  e.  A  /\  ch ) )
1514simprbi 273 . . . . . . 7  |-  ( ( f `  n )  e.  { x  e.  A  |  ps }  ->  ch )
1615ralimi 2533 . . . . . 6  |-  ( A. n  e.  N  (
f `  n )  e.  { x  e.  A  |  ps }  ->  A. n  e.  N  ch )
1716ad2antll 488 . . . . 5  |-  ( (
ph  /\  ( f  Fn  N  /\  A. n  e.  N  ( f `  n )  e.  {
x  e.  A  |  ps } ) )  ->  A. n  e.  N  ch )
1812, 17jca 304 . . . 4  |-  ( (
ph  /\  ( f  Fn  N  /\  A. n  e.  N  ( f `  n )  e.  {
x  e.  A  |  ps } ) )  -> 
( f  Fn  N  /\  A. n  e.  N  ch ) )
1918ex 114 . . 3  |-  ( ph  ->  ( ( f  Fn  N  /\  A. n  e.  N  ( f `  n )  e.  {
x  e.  A  |  ps } )  ->  (
f  Fn  N  /\  A. n  e.  N  ch ) ) )
2019eximdv 1873 . 2  |-  ( ph  ->  ( E. f ( f  Fn  N  /\  A. n  e.  N  ( f `  n )  e.  { x  e.  A  |  ps }
)  ->  E. f
( f  Fn  N  /\  A. n  e.  N  ch ) ) )
2111, 20mpd 13 1  |-  ( ph  ->  E. f ( f  Fn  N  /\  A. n  e.  N  ch ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1348   E.wex 1485    e. wcel 2141   A.wral 2448   E.wrex 2449   {crab 2452   _Vcvv 2730   class class class wbr 3987   omcom 4572    Fn wfn 5191   ` cfv 5196    ~~ cen 6714  CCHOICEwacc 7217
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4102  ax-sep 4105  ax-pow 4158  ax-pr 4192  ax-un 4416  ax-iinf 4570
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-un 3125  df-in 3127  df-ss 3134  df-pw 3566  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3795  df-int 3830  df-iun 3873  df-br 3988  df-opab 4049  df-mpt 4050  df-id 4276  df-iom 4573  df-xp 4615  df-rel 4616  df-cnv 4617  df-co 4618  df-dm 4619  df-rn 4620  df-res 4621  df-ima 4622  df-iota 5158  df-fun 5198  df-fn 5199  df-f 5200  df-f1 5201  df-fo 5202  df-f1o 5203  df-fv 5204  df-2nd 6118  df-er 6511  df-en 6717  df-cc 7218
This theorem is referenced by:  omctfn  12391
  Copyright terms: Public domain W3C validator