ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cc4n Unicode version

Theorem cc4n 7272
Description: Countable choice with a simpler restriction on how every set in the countable collection needs to be inhabited. That is, compared with cc4 7271, the hypotheses only require an A(n) for each value of  n, not a single set  A which suffices for every 
n  e.  om. (Contributed by Mario Carneiro, 7-Apr-2013.) (Revised by Jim Kingdon, 3-May-2024.)
Hypotheses
Ref Expression
cc4n.cc  |-  ( ph  -> CCHOICE )
cc4n.1  |-  ( ph  ->  A. n  e.  N  { x  e.  A  |  ps }  e.  V
)
cc4n.2  |-  ( ph  ->  N  ~~  om )
cc4n.3  |-  ( x  =  ( f `  n )  ->  ( ps 
<->  ch ) )
cc4n.m  |-  ( ph  ->  A. n  e.  N  E. x  e.  A  ps )
Assertion
Ref Expression
cc4n  |-  ( ph  ->  E. f ( f  Fn  N  /\  A. n  e.  N  ch ) )
Distinct variable groups:    A, f, x   
f, N, n    ch, x    ph, f, n    ps, f    x, n
Allowed substitution hints:    ph( x)    ps( x, n)    ch( f, n)    A( n)    N( x)    V( x, f, n)

Proof of Theorem cc4n
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 cc4n.cc . . 3  |-  ( ph  -> CCHOICE )
2 cc4n.1 . . . 4  |-  ( ph  ->  A. n  e.  N  { x  e.  A  |  ps }  e.  V
)
3 elex 2750 . . . . 5  |-  ( { x  e.  A  |  ps }  e.  V  ->  { x  e.  A  |  ps }  e.  _V )
43ralimi 2540 . . . 4  |-  ( A. n  e.  N  {
x  e.  A  |  ps }  e.  V  ->  A. n  e.  N  { x  e.  A  |  ps }  e.  _V )
52, 4syl 14 . . 3  |-  ( ph  ->  A. n  e.  N  { x  e.  A  |  ps }  e.  _V )
6 cc4n.m . . . 4  |-  ( ph  ->  A. n  e.  N  E. x  e.  A  ps )
7 rabn0m 3452 . . . . 5  |-  ( E. w  w  e.  {
x  e.  A  |  ps }  <->  E. x  e.  A  ps )
87ralbii 2483 . . . 4  |-  ( A. n  e.  N  E. w  w  e.  { x  e.  A  |  ps } 
<-> 
A. n  e.  N  E. x  e.  A  ps )
96, 8sylibr 134 . . 3  |-  ( ph  ->  A. n  e.  N  E. w  w  e.  { x  e.  A  |  ps } )
10 cc4n.2 . . 3  |-  ( ph  ->  N  ~~  om )
111, 5, 9, 10cc3 7269 . 2  |-  ( ph  ->  E. f ( f  Fn  N  /\  A. n  e.  N  (
f `  n )  e.  { x  e.  A  |  ps } ) )
12 simprl 529 . . . . 5  |-  ( (
ph  /\  ( f  Fn  N  /\  A. n  e.  N  ( f `  n )  e.  {
x  e.  A  |  ps } ) )  -> 
f  Fn  N )
13 cc4n.3 . . . . . . . . 9  |-  ( x  =  ( f `  n )  ->  ( ps 
<->  ch ) )
1413elrab 2895 . . . . . . . 8  |-  ( ( f `  n )  e.  { x  e.  A  |  ps }  <->  ( ( f `  n
)  e.  A  /\  ch ) )
1514simprbi 275 . . . . . . 7  |-  ( ( f `  n )  e.  { x  e.  A  |  ps }  ->  ch )
1615ralimi 2540 . . . . . 6  |-  ( A. n  e.  N  (
f `  n )  e.  { x  e.  A  |  ps }  ->  A. n  e.  N  ch )
1716ad2antll 491 . . . . 5  |-  ( (
ph  /\  ( f  Fn  N  /\  A. n  e.  N  ( f `  n )  e.  {
x  e.  A  |  ps } ) )  ->  A. n  e.  N  ch )
1812, 17jca 306 . . . 4  |-  ( (
ph  /\  ( f  Fn  N  /\  A. n  e.  N  ( f `  n )  e.  {
x  e.  A  |  ps } ) )  -> 
( f  Fn  N  /\  A. n  e.  N  ch ) )
1918ex 115 . . 3  |-  ( ph  ->  ( ( f  Fn  N  /\  A. n  e.  N  ( f `  n )  e.  {
x  e.  A  |  ps } )  ->  (
f  Fn  N  /\  A. n  e.  N  ch ) ) )
2019eximdv 1880 . 2  |-  ( ph  ->  ( E. f ( f  Fn  N  /\  A. n  e.  N  ( f `  n )  e.  { x  e.  A  |  ps }
)  ->  E. f
( f  Fn  N  /\  A. n  e.  N  ch ) ) )
2111, 20mpd 13 1  |-  ( ph  ->  E. f ( f  Fn  N  /\  A. n  e.  N  ch ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1353   E.wex 1492    e. wcel 2148   A.wral 2455   E.wrex 2456   {crab 2459   _Vcvv 2739   class class class wbr 4005   omcom 4591    Fn wfn 5213   ` cfv 5218    ~~ cen 6740  CCHOICEwacc 7263
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-iinf 4589
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-iom 4592  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-2nd 6144  df-er 6537  df-en 6743  df-cc 7264
This theorem is referenced by:  omctfn  12446
  Copyright terms: Public domain W3C validator