ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cc4n Unicode version

Theorem cc4n 7453
Description: Countable choice with a simpler restriction on how every set in the countable collection needs to be inhabited. That is, compared with cc4 7452, the hypotheses only require an A(n) for each value of  n, not a single set  A which suffices for every 
n  e.  om. (Contributed by Mario Carneiro, 7-Apr-2013.) (Revised by Jim Kingdon, 3-May-2024.)
Hypotheses
Ref Expression
cc4n.cc  |-  ( ph  -> CCHOICE )
cc4n.1  |-  ( ph  ->  A. n  e.  N  { x  e.  A  |  ps }  e.  V
)
cc4n.2  |-  ( ph  ->  N  ~~  om )
cc4n.3  |-  ( x  =  ( f `  n )  ->  ( ps 
<->  ch ) )
cc4n.m  |-  ( ph  ->  A. n  e.  N  E. x  e.  A  ps )
Assertion
Ref Expression
cc4n  |-  ( ph  ->  E. f ( f  Fn  N  /\  A. n  e.  N  ch ) )
Distinct variable groups:    A, f, x   
f, N, n    ch, x    ph, f, n    ps, f    x, n
Allowed substitution hints:    ph( x)    ps( x, n)    ch( f, n)    A( n)    N( x)    V( x, f, n)

Proof of Theorem cc4n
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 cc4n.cc . . 3  |-  ( ph  -> CCHOICE )
2 cc4n.1 . . . 4  |-  ( ph  ->  A. n  e.  N  { x  e.  A  |  ps }  e.  V
)
3 elex 2811 . . . . 5  |-  ( { x  e.  A  |  ps }  e.  V  ->  { x  e.  A  |  ps }  e.  _V )
43ralimi 2593 . . . 4  |-  ( A. n  e.  N  {
x  e.  A  |  ps }  e.  V  ->  A. n  e.  N  { x  e.  A  |  ps }  e.  _V )
52, 4syl 14 . . 3  |-  ( ph  ->  A. n  e.  N  { x  e.  A  |  ps }  e.  _V )
6 cc4n.m . . . 4  |-  ( ph  ->  A. n  e.  N  E. x  e.  A  ps )
7 rabn0m 3519 . . . . 5  |-  ( E. w  w  e.  {
x  e.  A  |  ps }  <->  E. x  e.  A  ps )
87ralbii 2536 . . . 4  |-  ( A. n  e.  N  E. w  w  e.  { x  e.  A  |  ps } 
<-> 
A. n  e.  N  E. x  e.  A  ps )
96, 8sylibr 134 . . 3  |-  ( ph  ->  A. n  e.  N  E. w  w  e.  { x  e.  A  |  ps } )
10 cc4n.2 . . 3  |-  ( ph  ->  N  ~~  om )
111, 5, 9, 10cc3 7450 . 2  |-  ( ph  ->  E. f ( f  Fn  N  /\  A. n  e.  N  (
f `  n )  e.  { x  e.  A  |  ps } ) )
12 simprl 529 . . . . 5  |-  ( (
ph  /\  ( f  Fn  N  /\  A. n  e.  N  ( f `  n )  e.  {
x  e.  A  |  ps } ) )  -> 
f  Fn  N )
13 cc4n.3 . . . . . . . . 9  |-  ( x  =  ( f `  n )  ->  ( ps 
<->  ch ) )
1413elrab 2959 . . . . . . . 8  |-  ( ( f `  n )  e.  { x  e.  A  |  ps }  <->  ( ( f `  n
)  e.  A  /\  ch ) )
1514simprbi 275 . . . . . . 7  |-  ( ( f `  n )  e.  { x  e.  A  |  ps }  ->  ch )
1615ralimi 2593 . . . . . 6  |-  ( A. n  e.  N  (
f `  n )  e.  { x  e.  A  |  ps }  ->  A. n  e.  N  ch )
1716ad2antll 491 . . . . 5  |-  ( (
ph  /\  ( f  Fn  N  /\  A. n  e.  N  ( f `  n )  e.  {
x  e.  A  |  ps } ) )  ->  A. n  e.  N  ch )
1812, 17jca 306 . . . 4  |-  ( (
ph  /\  ( f  Fn  N  /\  A. n  e.  N  ( f `  n )  e.  {
x  e.  A  |  ps } ) )  -> 
( f  Fn  N  /\  A. n  e.  N  ch ) )
1918ex 115 . . 3  |-  ( ph  ->  ( ( f  Fn  N  /\  A. n  e.  N  ( f `  n )  e.  {
x  e.  A  |  ps } )  ->  (
f  Fn  N  /\  A. n  e.  N  ch ) ) )
2019eximdv 1926 . 2  |-  ( ph  ->  ( E. f ( f  Fn  N  /\  A. n  e.  N  ( f `  n )  e.  { x  e.  A  |  ps }
)  ->  E. f
( f  Fn  N  /\  A. n  e.  N  ch ) ) )
2111, 20mpd 13 1  |-  ( ph  ->  E. f ( f  Fn  N  /\  A. n  e.  N  ch ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1395   E.wex 1538    e. wcel 2200   A.wral 2508   E.wrex 2509   {crab 2512   _Vcvv 2799   class class class wbr 4082   omcom 4681    Fn wfn 5312   ` cfv 5317    ~~ cen 6883  CCHOICEwacc 7444
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-iinf 4679
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-2nd 6285  df-er 6678  df-en 6886  df-cc 7445
This theorem is referenced by:  omctfn  13009
  Copyright terms: Public domain W3C validator