ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cc4n Unicode version

Theorem cc4n 7233
Description: Countable choice with a simpler restriction on how every set in the countable collection needs to be inhabited. That is, compared with cc4 7232, the hypotheses only require an A(n) for each value of  n, not a single set  A which suffices for every 
n  e.  om. (Contributed by Mario Carneiro, 7-Apr-2013.) (Revised by Jim Kingdon, 3-May-2024.)
Hypotheses
Ref Expression
cc4n.cc  |-  ( ph  -> CCHOICE )
cc4n.1  |-  ( ph  ->  A. n  e.  N  { x  e.  A  |  ps }  e.  V
)
cc4n.2  |-  ( ph  ->  N  ~~  om )
cc4n.3  |-  ( x  =  ( f `  n )  ->  ( ps 
<->  ch ) )
cc4n.m  |-  ( ph  ->  A. n  e.  N  E. x  e.  A  ps )
Assertion
Ref Expression
cc4n  |-  ( ph  ->  E. f ( f  Fn  N  /\  A. n  e.  N  ch ) )
Distinct variable groups:    A, f, x   
f, N, n    ch, x    ph, f, n    ps, f    x, n
Allowed substitution hints:    ph( x)    ps( x, n)    ch( f, n)    A( n)    N( x)    V( x, f, n)

Proof of Theorem cc4n
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 cc4n.cc . . 3  |-  ( ph  -> CCHOICE )
2 cc4n.1 . . . 4  |-  ( ph  ->  A. n  e.  N  { x  e.  A  |  ps }  e.  V
)
3 elex 2741 . . . . 5  |-  ( { x  e.  A  |  ps }  e.  V  ->  { x  e.  A  |  ps }  e.  _V )
43ralimi 2533 . . . 4  |-  ( A. n  e.  N  {
x  e.  A  |  ps }  e.  V  ->  A. n  e.  N  { x  e.  A  |  ps }  e.  _V )
52, 4syl 14 . . 3  |-  ( ph  ->  A. n  e.  N  { x  e.  A  |  ps }  e.  _V )
6 cc4n.m . . . 4  |-  ( ph  ->  A. n  e.  N  E. x  e.  A  ps )
7 rabn0m 3442 . . . . 5  |-  ( E. w  w  e.  {
x  e.  A  |  ps }  <->  E. x  e.  A  ps )
87ralbii 2476 . . . 4  |-  ( A. n  e.  N  E. w  w  e.  { x  e.  A  |  ps } 
<-> 
A. n  e.  N  E. x  e.  A  ps )
96, 8sylibr 133 . . 3  |-  ( ph  ->  A. n  e.  N  E. w  w  e.  { x  e.  A  |  ps } )
10 cc4n.2 . . 3  |-  ( ph  ->  N  ~~  om )
111, 5, 9, 10cc3 7230 . 2  |-  ( ph  ->  E. f ( f  Fn  N  /\  A. n  e.  N  (
f `  n )  e.  { x  e.  A  |  ps } ) )
12 simprl 526 . . . . 5  |-  ( (
ph  /\  ( f  Fn  N  /\  A. n  e.  N  ( f `  n )  e.  {
x  e.  A  |  ps } ) )  -> 
f  Fn  N )
13 cc4n.3 . . . . . . . . 9  |-  ( x  =  ( f `  n )  ->  ( ps 
<->  ch ) )
1413elrab 2886 . . . . . . . 8  |-  ( ( f `  n )  e.  { x  e.  A  |  ps }  <->  ( ( f `  n
)  e.  A  /\  ch ) )
1514simprbi 273 . . . . . . 7  |-  ( ( f `  n )  e.  { x  e.  A  |  ps }  ->  ch )
1615ralimi 2533 . . . . . 6  |-  ( A. n  e.  N  (
f `  n )  e.  { x  e.  A  |  ps }  ->  A. n  e.  N  ch )
1716ad2antll 488 . . . . 5  |-  ( (
ph  /\  ( f  Fn  N  /\  A. n  e.  N  ( f `  n )  e.  {
x  e.  A  |  ps } ) )  ->  A. n  e.  N  ch )
1812, 17jca 304 . . . 4  |-  ( (
ph  /\  ( f  Fn  N  /\  A. n  e.  N  ( f `  n )  e.  {
x  e.  A  |  ps } ) )  -> 
( f  Fn  N  /\  A. n  e.  N  ch ) )
1918ex 114 . . 3  |-  ( ph  ->  ( ( f  Fn  N  /\  A. n  e.  N  ( f `  n )  e.  {
x  e.  A  |  ps } )  ->  (
f  Fn  N  /\  A. n  e.  N  ch ) ) )
2019eximdv 1873 . 2  |-  ( ph  ->  ( E. f ( f  Fn  N  /\  A. n  e.  N  ( f `  n )  e.  { x  e.  A  |  ps }
)  ->  E. f
( f  Fn  N  /\  A. n  e.  N  ch ) ) )
2111, 20mpd 13 1  |-  ( ph  ->  E. f ( f  Fn  N  /\  A. n  e.  N  ch ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1348   E.wex 1485    e. wcel 2141   A.wral 2448   E.wrex 2449   {crab 2452   _Vcvv 2730   class class class wbr 3989   omcom 4574    Fn wfn 5193   ` cfv 5198    ~~ cen 6716  CCHOICEwacc 7224
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-iinf 4572
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-2nd 6120  df-er 6513  df-en 6719  df-cc 7225
This theorem is referenced by:  omctfn  12398
  Copyright terms: Public domain W3C validator