Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > cc4n | Unicode version |
Description: Countable choice with a simpler restriction on how every set in the countable collection needs to be inhabited. That is, compared with cc4 7225, the hypotheses only require an A(n) for each value of , not a single set which suffices for every . (Contributed by Mario Carneiro, 7-Apr-2013.) (Revised by Jim Kingdon, 3-May-2024.) |
Ref | Expression |
---|---|
cc4n.cc | CCHOICE |
cc4n.1 | |
cc4n.2 | |
cc4n.3 | |
cc4n.m |
Ref | Expression |
---|---|
cc4n |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cc4n.cc | . . 3 CCHOICE | |
2 | cc4n.1 | . . . 4 | |
3 | elex 2741 | . . . . 5 | |
4 | 3 | ralimi 2533 | . . . 4 |
5 | 2, 4 | syl 14 | . . 3 |
6 | cc4n.m | . . . 4 | |
7 | rabn0m 3441 | . . . . 5 | |
8 | 7 | ralbii 2476 | . . . 4 |
9 | 6, 8 | sylibr 133 | . . 3 |
10 | cc4n.2 | . . 3 | |
11 | 1, 5, 9, 10 | cc3 7223 | . 2 |
12 | simprl 526 | . . . . 5 | |
13 | cc4n.3 | . . . . . . . . 9 | |
14 | 13 | elrab 2886 | . . . . . . . 8 |
15 | 14 | simprbi 273 | . . . . . . 7 |
16 | 15 | ralimi 2533 | . . . . . 6 |
17 | 16 | ad2antll 488 | . . . . 5 |
18 | 12, 17 | jca 304 | . . . 4 |
19 | 18 | ex 114 | . . 3 |
20 | 19 | eximdv 1873 | . 2 |
21 | 11, 20 | mpd 13 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1348 wex 1485 wcel 2141 wral 2448 wrex 2449 crab 2452 cvv 2730 class class class wbr 3987 com 4572 wfn 5191 cfv 5196 cen 6714 CCHOICEwacc 7217 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4102 ax-sep 4105 ax-pow 4158 ax-pr 4192 ax-un 4416 ax-iinf 4570 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-un 3125 df-in 3127 df-ss 3134 df-pw 3566 df-sn 3587 df-pr 3588 df-op 3590 df-uni 3795 df-int 3830 df-iun 3873 df-br 3988 df-opab 4049 df-mpt 4050 df-id 4276 df-iom 4573 df-xp 4615 df-rel 4616 df-cnv 4617 df-co 4618 df-dm 4619 df-rn 4620 df-res 4621 df-ima 4622 df-iota 5158 df-fun 5198 df-fn 5199 df-f 5200 df-f1 5201 df-fo 5202 df-f1o 5203 df-fv 5204 df-2nd 6118 df-er 6511 df-en 6717 df-cc 7218 |
This theorem is referenced by: omctfn 12391 |
Copyright terms: Public domain | W3C validator |