ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cc4f Unicode version

Theorem cc4f 7401
Description: Countable choice by showing the existence of a function 
f which can choose a value at each index 
n such that  ch holds. (Contributed by Mario Carneiro, 7-Apr-2013.) (Revised by Jim Kingdon, 3-May-2024.)
Hypotheses
Ref Expression
cc4f.cc  |-  ( ph  -> CCHOICE )
cc4f.1  |-  ( ph  ->  A  e.  V )
cc4f.a  |-  F/_ n A
cc4f.2  |-  ( ph  ->  N  ~~  om )
cc4f.3  |-  ( x  =  ( f `  n )  ->  ( ps 
<->  ch ) )
cc4f.m  |-  ( ph  ->  A. n  e.  N  E. x  e.  A  ps )
Assertion
Ref Expression
cc4f  |-  ( ph  ->  E. f ( f : N --> A  /\  A. n  e.  N  ch ) )
Distinct variable groups:    A, f, x   
f, N, n    ch, x    ph, f, n    ps, f    x, n
Allowed substitution hints:    ph( x)    ps( x, n)    ch( f, n)    A( n)    N( x)    V( x, f, n)

Proof of Theorem cc4f
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 cc4f.cc . . 3  |-  ( ph  -> CCHOICE )
2 cc4f.1 . . . . 5  |-  ( ph  ->  A  e.  V )
3 rabexg 4195 . . . . 5  |-  ( A  e.  V  ->  { x  e.  A  |  ps }  e.  _V )
42, 3syl 14 . . . 4  |-  ( ph  ->  { x  e.  A  |  ps }  e.  _V )
54ralrimivw 2581 . . 3  |-  ( ph  ->  A. n  e.  N  { x  e.  A  |  ps }  e.  _V )
6 cc4f.m . . . 4  |-  ( ph  ->  A. n  e.  N  E. x  e.  A  ps )
7 rabn0m 3492 . . . . 5  |-  ( E. w  w  e.  {
x  e.  A  |  ps }  <->  E. x  e.  A  ps )
87ralbii 2513 . . . 4  |-  ( A. n  e.  N  E. w  w  e.  { x  e.  A  |  ps } 
<-> 
A. n  e.  N  E. x  e.  A  ps )
96, 8sylibr 134 . . 3  |-  ( ph  ->  A. n  e.  N  E. w  w  e.  { x  e.  A  |  ps } )
10 cc4f.2 . . 3  |-  ( ph  ->  N  ~~  om )
111, 5, 9, 10cc3 7400 . 2  |-  ( ph  ->  E. f ( f  Fn  N  /\  A. n  e.  N  (
f `  n )  e.  { x  e.  A  |  ps } ) )
12 simprl 529 . . . . . 6  |-  ( (
ph  /\  ( f  Fn  N  /\  A. n  e.  N  ( f `  n )  e.  {
x  e.  A  |  ps } ) )  -> 
f  Fn  N )
13 elrabi 2930 . . . . . . . 8  |-  ( ( f `  n )  e.  { x  e.  A  |  ps }  ->  ( f `  n
)  e.  A )
1413ralimi 2570 . . . . . . 7  |-  ( A. n  e.  N  (
f `  n )  e.  { x  e.  A  |  ps }  ->  A. n  e.  N  ( f `  n )  e.  A
)
1514ad2antll 491 . . . . . 6  |-  ( (
ph  /\  ( f  Fn  N  /\  A. n  e.  N  ( f `  n )  e.  {
x  e.  A  |  ps } ) )  ->  A. n  e.  N  ( f `  n
)  e.  A )
16 nfcv 2349 . . . . . . 7  |-  F/_ n N
17 cc4f.a . . . . . . 7  |-  F/_ n A
18 nfcv 2349 . . . . . . 7  |-  F/_ n
f
1916, 17, 18ffnfvf 5752 . . . . . 6  |-  ( f : N --> A  <->  ( f  Fn  N  /\  A. n  e.  N  ( f `  n )  e.  A
) )
2012, 15, 19sylanbrc 417 . . . . 5  |-  ( (
ph  /\  ( f  Fn  N  /\  A. n  e.  N  ( f `  n )  e.  {
x  e.  A  |  ps } ) )  -> 
f : N --> A )
21 cc4f.3 . . . . . . . . 9  |-  ( x  =  ( f `  n )  ->  ( ps 
<->  ch ) )
2221elrab 2933 . . . . . . . 8  |-  ( ( f `  n )  e.  { x  e.  A  |  ps }  <->  ( ( f `  n
)  e.  A  /\  ch ) )
2322simprbi 275 . . . . . . 7  |-  ( ( f `  n )  e.  { x  e.  A  |  ps }  ->  ch )
2423ralimi 2570 . . . . . 6  |-  ( A. n  e.  N  (
f `  n )  e.  { x  e.  A  |  ps }  ->  A. n  e.  N  ch )
2524ad2antll 491 . . . . 5  |-  ( (
ph  /\  ( f  Fn  N  /\  A. n  e.  N  ( f `  n )  e.  {
x  e.  A  |  ps } ) )  ->  A. n  e.  N  ch )
2620, 25jca 306 . . . 4  |-  ( (
ph  /\  ( f  Fn  N  /\  A. n  e.  N  ( f `  n )  e.  {
x  e.  A  |  ps } ) )  -> 
( f : N --> A  /\  A. n  e.  N  ch ) )
2726ex 115 . . 3  |-  ( ph  ->  ( ( f  Fn  N  /\  A. n  e.  N  ( f `  n )  e.  {
x  e.  A  |  ps } )  ->  (
f : N --> A  /\  A. n  e.  N  ch ) ) )
2827eximdv 1904 . 2  |-  ( ph  ->  ( E. f ( f  Fn  N  /\  A. n  e.  N  ( f `  n )  e.  { x  e.  A  |  ps }
)  ->  E. f
( f : N --> A  /\  A. n  e.  N  ch ) ) )
2911, 28mpd 13 1  |-  ( ph  ->  E. f ( f : N --> A  /\  A. n  e.  N  ch ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373   E.wex 1516    e. wcel 2177   F/_wnfc 2336   A.wral 2485   E.wrex 2486   {crab 2489   _Vcvv 2773   class class class wbr 4051   omcom 4646    Fn wfn 5275   -->wf 5276   ` cfv 5280    ~~ cen 6838  CCHOICEwacc 7394
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4167  ax-sep 4170  ax-pow 4226  ax-pr 4261  ax-un 4488  ax-iinf 4644
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-int 3892  df-iun 3935  df-br 4052  df-opab 4114  df-mpt 4115  df-id 4348  df-iom 4647  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-res 4695  df-ima 4696  df-iota 5241  df-fun 5282  df-fn 5283  df-f 5284  df-f1 5285  df-fo 5286  df-f1o 5287  df-fv 5288  df-2nd 6240  df-er 6633  df-en 6841  df-cc 7395
This theorem is referenced by:  cc4  7402
  Copyright terms: Public domain W3C validator