| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cc4f | Unicode version | ||
| Description: Countable choice by
showing the existence of a function |
| Ref | Expression |
|---|---|
| cc4f.cc |
|
| cc4f.1 |
|
| cc4f.a |
|
| cc4f.2 |
|
| cc4f.3 |
|
| cc4f.m |
|
| Ref | Expression |
|---|---|
| cc4f |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cc4f.cc |
. . 3
| |
| 2 | cc4f.1 |
. . . . 5
| |
| 3 | rabexg 4226 |
. . . . 5
| |
| 4 | 2, 3 | syl 14 |
. . . 4
|
| 5 | 4 | ralrimivw 2604 |
. . 3
|
| 6 | cc4f.m |
. . . 4
| |
| 7 | rabn0m 3519 |
. . . . 5
| |
| 8 | 7 | ralbii 2536 |
. . . 4
|
| 9 | 6, 8 | sylibr 134 |
. . 3
|
| 10 | cc4f.2 |
. . 3
| |
| 11 | 1, 5, 9, 10 | cc3 7450 |
. 2
|
| 12 | simprl 529 |
. . . . . 6
| |
| 13 | elrabi 2956 |
. . . . . . . 8
| |
| 14 | 13 | ralimi 2593 |
. . . . . . 7
|
| 15 | 14 | ad2antll 491 |
. . . . . 6
|
| 16 | nfcv 2372 |
. . . . . . 7
| |
| 17 | cc4f.a |
. . . . . . 7
| |
| 18 | nfcv 2372 |
. . . . . . 7
| |
| 19 | 16, 17, 18 | ffnfvf 5793 |
. . . . . 6
|
| 20 | 12, 15, 19 | sylanbrc 417 |
. . . . 5
|
| 21 | cc4f.3 |
. . . . . . . . 9
| |
| 22 | 21 | elrab 2959 |
. . . . . . . 8
|
| 23 | 22 | simprbi 275 |
. . . . . . 7
|
| 24 | 23 | ralimi 2593 |
. . . . . 6
|
| 25 | 24 | ad2antll 491 |
. . . . 5
|
| 26 | 20, 25 | jca 306 |
. . . 4
|
| 27 | 26 | ex 115 |
. . 3
|
| 28 | 27 | eximdv 1926 |
. 2
|
| 29 | 11, 28 | mpd 13 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-iinf 4679 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4383 df-iom 4682 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-f1 5322 df-fo 5323 df-f1o 5324 df-fv 5325 df-2nd 6285 df-er 6678 df-en 6886 df-cc 7445 |
| This theorem is referenced by: cc4 7452 |
| Copyright terms: Public domain | W3C validator |