ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cc4f Unicode version

Theorem cc4f 7168
Description: Countable choice by showing the existence of a function 
f which can choose a value at each index 
n such that  ch holds. (Contributed by Mario Carneiro, 7-Apr-2013.) (Revised by Jim Kingdon, 3-May-2024.)
Hypotheses
Ref Expression
cc4f.cc  |-  ( ph  -> CCHOICE )
cc4f.1  |-  ( ph  ->  A  e.  V )
cc4f.a  |-  F/_ n A
cc4f.2  |-  ( ph  ->  N  ~~  om )
cc4f.3  |-  ( x  =  ( f `  n )  ->  ( ps 
<->  ch ) )
cc4f.m  |-  ( ph  ->  A. n  e.  N  E. x  e.  A  ps )
Assertion
Ref Expression
cc4f  |-  ( ph  ->  E. f ( f : N --> A  /\  A. n  e.  N  ch ) )
Distinct variable groups:    A, f, x   
f, N, n    ch, x    ph, f, n    ps, f    x, n
Allowed substitution hints:    ph( x)    ps( x, n)    ch( f, n)    A( n)    N( x)    V( x, f, n)

Proof of Theorem cc4f
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 cc4f.cc . . 3  |-  ( ph  -> CCHOICE )
2 cc4f.1 . . . . 5  |-  ( ph  ->  A  e.  V )
3 rabexg 4103 . . . . 5  |-  ( A  e.  V  ->  { x  e.  A  |  ps }  e.  _V )
42, 3syl 14 . . . 4  |-  ( ph  ->  { x  e.  A  |  ps }  e.  _V )
54ralrimivw 2528 . . 3  |-  ( ph  ->  A. n  e.  N  { x  e.  A  |  ps }  e.  _V )
6 cc4f.m . . . 4  |-  ( ph  ->  A. n  e.  N  E. x  e.  A  ps )
7 rabn0m 3417 . . . . 5  |-  ( E. w  w  e.  {
x  e.  A  |  ps }  <->  E. x  e.  A  ps )
87ralbii 2460 . . . 4  |-  ( A. n  e.  N  E. w  w  e.  { x  e.  A  |  ps } 
<-> 
A. n  e.  N  E. x  e.  A  ps )
96, 8sylibr 133 . . 3  |-  ( ph  ->  A. n  e.  N  E. w  w  e.  { x  e.  A  |  ps } )
10 cc4f.2 . . 3  |-  ( ph  ->  N  ~~  om )
111, 5, 9, 10cc3 7167 . 2  |-  ( ph  ->  E. f ( f  Fn  N  /\  A. n  e.  N  (
f `  n )  e.  { x  e.  A  |  ps } ) )
12 simprl 521 . . . . . 6  |-  ( (
ph  /\  ( f  Fn  N  /\  A. n  e.  N  ( f `  n )  e.  {
x  e.  A  |  ps } ) )  -> 
f  Fn  N )
13 elrabi 2861 . . . . . . . 8  |-  ( ( f `  n )  e.  { x  e.  A  |  ps }  ->  ( f `  n
)  e.  A )
1413ralimi 2517 . . . . . . 7  |-  ( A. n  e.  N  (
f `  n )  e.  { x  e.  A  |  ps }  ->  A. n  e.  N  ( f `  n )  e.  A
)
1514ad2antll 483 . . . . . 6  |-  ( (
ph  /\  ( f  Fn  N  /\  A. n  e.  N  ( f `  n )  e.  {
x  e.  A  |  ps } ) )  ->  A. n  e.  N  ( f `  n
)  e.  A )
16 nfcv 2296 . . . . . . 7  |-  F/_ n N
17 cc4f.a . . . . . . 7  |-  F/_ n A
18 nfcv 2296 . . . . . . 7  |-  F/_ n
f
1916, 17, 18ffnfvf 5619 . . . . . 6  |-  ( f : N --> A  <->  ( f  Fn  N  /\  A. n  e.  N  ( f `  n )  e.  A
) )
2012, 15, 19sylanbrc 414 . . . . 5  |-  ( (
ph  /\  ( f  Fn  N  /\  A. n  e.  N  ( f `  n )  e.  {
x  e.  A  |  ps } ) )  -> 
f : N --> A )
21 cc4f.3 . . . . . . . . 9  |-  ( x  =  ( f `  n )  ->  ( ps 
<->  ch ) )
2221elrab 2864 . . . . . . . 8  |-  ( ( f `  n )  e.  { x  e.  A  |  ps }  <->  ( ( f `  n
)  e.  A  /\  ch ) )
2322simprbi 273 . . . . . . 7  |-  ( ( f `  n )  e.  { x  e.  A  |  ps }  ->  ch )
2423ralimi 2517 . . . . . 6  |-  ( A. n  e.  N  (
f `  n )  e.  { x  e.  A  |  ps }  ->  A. n  e.  N  ch )
2524ad2antll 483 . . . . 5  |-  ( (
ph  /\  ( f  Fn  N  /\  A. n  e.  N  ( f `  n )  e.  {
x  e.  A  |  ps } ) )  ->  A. n  e.  N  ch )
2620, 25jca 304 . . . 4  |-  ( (
ph  /\  ( f  Fn  N  /\  A. n  e.  N  ( f `  n )  e.  {
x  e.  A  |  ps } ) )  -> 
( f : N --> A  /\  A. n  e.  N  ch ) )
2726ex 114 . . 3  |-  ( ph  ->  ( ( f  Fn  N  /\  A. n  e.  N  ( f `  n )  e.  {
x  e.  A  |  ps } )  ->  (
f : N --> A  /\  A. n  e.  N  ch ) ) )
2827eximdv 1857 . 2  |-  ( ph  ->  ( E. f ( f  Fn  N  /\  A. n  e.  N  ( f `  n )  e.  { x  e.  A  |  ps }
)  ->  E. f
( f : N --> A  /\  A. n  e.  N  ch ) ) )
2911, 28mpd 13 1  |-  ( ph  ->  E. f ( f : N --> A  /\  A. n  e.  N  ch ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1332   E.wex 1469    e. wcel 2125   F/_wnfc 2283   A.wral 2432   E.wrex 2433   {crab 2436   _Vcvv 2709   class class class wbr 3961   omcom 4543    Fn wfn 5158   -->wf 5159   ` cfv 5163    ~~ cen 6672  CCHOICEwacc 7161
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1481  ax-10 1482  ax-11 1483  ax-i12 1484  ax-bndl 1486  ax-4 1487  ax-17 1503  ax-i9 1507  ax-ial 1511  ax-i5r 1512  ax-13 2127  ax-14 2128  ax-ext 2136  ax-coll 4075  ax-sep 4078  ax-pow 4130  ax-pr 4164  ax-un 4388  ax-iinf 4541
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-nf 1438  df-sb 1740  df-eu 2006  df-mo 2007  df-clab 2141  df-cleq 2147  df-clel 2150  df-nfc 2285  df-ral 2437  df-rex 2438  df-reu 2439  df-rab 2441  df-v 2711  df-sbc 2934  df-csb 3028  df-un 3102  df-in 3104  df-ss 3111  df-pw 3541  df-sn 3562  df-pr 3563  df-op 3565  df-uni 3769  df-int 3804  df-iun 3847  df-br 3962  df-opab 4022  df-mpt 4023  df-id 4248  df-iom 4544  df-xp 4585  df-rel 4586  df-cnv 4587  df-co 4588  df-dm 4589  df-rn 4590  df-res 4591  df-ima 4592  df-iota 5128  df-fun 5165  df-fn 5166  df-f 5167  df-f1 5168  df-fo 5169  df-f1o 5170  df-fv 5171  df-2nd 6079  df-er 6469  df-en 6675  df-cc 7162
This theorem is referenced by:  cc4  7169
  Copyright terms: Public domain W3C validator