ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uzsinds Unicode version

Theorem uzsinds 10515
Description: Strong (or "total") induction principle over an upper set of integers. (Contributed by Scott Fenton, 16-May-2014.)
Hypotheses
Ref Expression
uzsinds.1  |-  ( x  =  y  ->  ( ph 
<->  ps ) )
uzsinds.2  |-  ( x  =  N  ->  ( ph 
<->  ch ) )
uzsinds.3  |-  ( x  e.  ( ZZ>= `  M
)  ->  ( A. y  e.  ( M ... ( x  -  1 ) ) ps  ->  ph ) )
Assertion
Ref Expression
uzsinds  |-  ( N  e.  ( ZZ>= `  M
)  ->  ch )
Distinct variable groups:    ch, x    x, M, y    x, N    ph, y    ps, x
Allowed substitution hints:    ph( x)    ps( y)    ch( y)    N( y)

Proof of Theorem uzsinds
Dummy variables  k  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 uzsinds.2 . 2  |-  ( x  =  N  ->  ( ph 
<->  ch ) )
2 oveq2 5926 . . . 4  |-  ( w  =  M  ->  ( M ... w )  =  ( M ... M
) )
32raleqdv 2696 . . 3  |-  ( w  =  M  ->  ( A. x  e.  ( M ... w ) ph  <->  A. x  e.  ( M ... M ) ph ) )
4 oveq2 5926 . . . 4  |-  ( w  =  k  ->  ( M ... w )  =  ( M ... k
) )
54raleqdv 2696 . . 3  |-  ( w  =  k  ->  ( A. x  e.  ( M ... w ) ph  <->  A. x  e.  ( M ... k ) ph ) )
6 oveq2 5926 . . . 4  |-  ( w  =  ( k  +  1 )  ->  ( M ... w )  =  ( M ... (
k  +  1 ) ) )
76raleqdv 2696 . . 3  |-  ( w  =  ( k  +  1 )  ->  ( A. x  e.  ( M ... w ) ph  <->  A. x  e.  ( M ... ( k  +  1 ) ) ph ) )
8 oveq2 5926 . . . 4  |-  ( w  =  N  ->  ( M ... w )  =  ( M ... N
) )
98raleqdv 2696 . . 3  |-  ( w  =  N  ->  ( A. x  e.  ( M ... w ) ph  <->  A. x  e.  ( M ... N ) ph ) )
10 ral0 3548 . . . . . . 7  |-  A. y  e.  (/)  ps
11 zre 9321 . . . . . . . . . 10  |-  ( M  e.  ZZ  ->  M  e.  RR )
1211ltm1d 8951 . . . . . . . . 9  |-  ( M  e.  ZZ  ->  ( M  -  1 )  <  M )
13 peano2zm 9355 . . . . . . . . . 10  |-  ( M  e.  ZZ  ->  ( M  -  1 )  e.  ZZ )
14 fzn 10108 . . . . . . . . . 10  |-  ( ( M  e.  ZZ  /\  ( M  -  1
)  e.  ZZ )  ->  ( ( M  -  1 )  < 
M  <->  ( M ... ( M  -  1
) )  =  (/) ) )
1513, 14mpdan 421 . . . . . . . . 9  |-  ( M  e.  ZZ  ->  (
( M  -  1 )  <  M  <->  ( M ... ( M  -  1 ) )  =  (/) ) )
1612, 15mpbid 147 . . . . . . . 8  |-  ( M  e.  ZZ  ->  ( M ... ( M  - 
1 ) )  =  (/) )
1716raleqdv 2696 . . . . . . 7  |-  ( M  e.  ZZ  ->  ( A. y  e.  ( M ... ( M  - 
1 ) ) ps  <->  A. y  e.  (/)  ps )
)
1810, 17mpbiri 168 . . . . . 6  |-  ( M  e.  ZZ  ->  A. y  e.  ( M ... ( M  -  1 ) ) ps )
19 uzid 9606 . . . . . . 7  |-  ( M  e.  ZZ  ->  M  e.  ( ZZ>= `  M )
)
20 uzsinds.3 . . . . . . . 8  |-  ( x  e.  ( ZZ>= `  M
)  ->  ( A. y  e.  ( M ... ( x  -  1 ) ) ps  ->  ph ) )
2120rgen 2547 . . . . . . 7  |-  A. x  e.  ( ZZ>= `  M )
( A. y  e.  ( M ... (
x  -  1 ) ) ps  ->  ph )
22 nfv 1539 . . . . . . . . 9  |-  F/ x A. y  e.  ( M ... ( M  - 
1 ) ) ps
23 nfsbc1v 3004 . . . . . . . . 9  |-  F/ x [. M  /  x ]. ph
2422, 23nfim 1583 . . . . . . . 8  |-  F/ x
( A. y  e.  ( M ... ( M  -  1 ) ) ps  ->  [. M  /  x ]. ph )
25 oveq1 5925 . . . . . . . . . . 11  |-  ( x  =  M  ->  (
x  -  1 )  =  ( M  - 
1 ) )
2625oveq2d 5934 . . . . . . . . . 10  |-  ( x  =  M  ->  ( M ... ( x  - 
1 ) )  =  ( M ... ( M  -  1 ) ) )
2726raleqdv 2696 . . . . . . . . 9  |-  ( x  =  M  ->  ( A. y  e.  ( M ... ( x  - 
1 ) ) ps  <->  A. y  e.  ( M ... ( M  - 
1 ) ) ps ) )
28 sbceq1a 2995 . . . . . . . . 9  |-  ( x  =  M  ->  ( ph 
<-> 
[. M  /  x ]. ph ) )
2927, 28imbi12d 234 . . . . . . . 8  |-  ( x  =  M  ->  (
( A. y  e.  ( M ... (
x  -  1 ) ) ps  ->  ph )  <->  ( A. y  e.  ( M ... ( M  -  1 ) ) ps  ->  [. M  /  x ]. ph ) ) )
3024, 29rspc 2858 . . . . . . 7  |-  ( M  e.  ( ZZ>= `  M
)  ->  ( A. x  e.  ( ZZ>= `  M ) ( A. y  e.  ( M ... ( x  -  1 ) ) ps  ->  ph )  ->  ( A. y  e.  ( M ... ( M  -  1 ) ) ps  ->  [. M  /  x ]. ph ) ) )
3119, 21, 30mpisyl 1457 . . . . . 6  |-  ( M  e.  ZZ  ->  ( A. y  e.  ( M ... ( M  - 
1 ) ) ps 
->  [. M  /  x ]. ph ) )
3218, 31mpd 13 . . . . 5  |-  ( M  e.  ZZ  ->  [. M  /  x ]. ph )
33 ralsns 3656 . . . . 5  |-  ( M  e.  ZZ  ->  ( A. x  e.  { M } ph  <->  [. M  /  x ]. ph ) )
3432, 33mpbird 167 . . . 4  |-  ( M  e.  ZZ  ->  A. x  e.  { M } ph )
35 fzsn 10132 . . . . 5  |-  ( M  e.  ZZ  ->  ( M ... M )  =  { M } )
3635raleqdv 2696 . . . 4  |-  ( M  e.  ZZ  ->  ( A. x  e.  ( M ... M ) ph  <->  A. x  e.  { M } ph ) )
3734, 36mpbird 167 . . 3  |-  ( M  e.  ZZ  ->  A. x  e.  ( M ... M
) ph )
38 simpr 110 . . . . . 6  |-  ( ( k  e.  ( ZZ>= `  M )  /\  A. x  e.  ( M ... k ) ph )  ->  A. x  e.  ( M ... k )
ph )
39 uzsinds.1 . . . . . . . . . 10  |-  ( x  =  y  ->  ( ph 
<->  ps ) )
4039cbvralv 2726 . . . . . . . . 9  |-  ( A. x  e.  ( M ... k ) ph  <->  A. y  e.  ( M ... k
) ps )
4138, 40sylib 122 . . . . . . . 8  |-  ( ( k  e.  ( ZZ>= `  M )  /\  A. x  e.  ( M ... k ) ph )  ->  A. y  e.  ( M ... k ) ps )
42 eluzelz 9601 . . . . . . . . . . . . . 14  |-  ( k  e.  ( ZZ>= `  M
)  ->  k  e.  ZZ )
4342adantr 276 . . . . . . . . . . . . 13  |-  ( ( k  e.  ( ZZ>= `  M )  /\  A. x  e.  ( M ... k ) ph )  ->  k  e.  ZZ )
4443zcnd 9440 . . . . . . . . . . . 12  |-  ( ( k  e.  ( ZZ>= `  M )  /\  A. x  e.  ( M ... k ) ph )  ->  k  e.  CC )
45 1cnd 8035 . . . . . . . . . . . 12  |-  ( ( k  e.  ( ZZ>= `  M )  /\  A. x  e.  ( M ... k ) ph )  ->  1  e.  CC )
4644, 45pncand 8331 . . . . . . . . . . 11  |-  ( ( k  e.  ( ZZ>= `  M )  /\  A. x  e.  ( M ... k ) ph )  ->  ( ( k  +  1 )  -  1 )  =  k )
4746oveq2d 5934 . . . . . . . . . 10  |-  ( ( k  e.  ( ZZ>= `  M )  /\  A. x  e.  ( M ... k ) ph )  ->  ( M ... (
( k  +  1 )  -  1 ) )  =  ( M ... k ) )
4847raleqdv 2696 . . . . . . . . 9  |-  ( ( k  e.  ( ZZ>= `  M )  /\  A. x  e.  ( M ... k ) ph )  ->  ( A. y  e.  ( M ... (
( k  +  1 )  -  1 ) ) ps  <->  A. y  e.  ( M ... k
) ps ) )
49 peano2uz 9648 . . . . . . . . . . 11  |-  ( k  e.  ( ZZ>= `  M
)  ->  ( k  +  1 )  e.  ( ZZ>= `  M )
)
5049adantr 276 . . . . . . . . . 10  |-  ( ( k  e.  ( ZZ>= `  M )  /\  A. x  e.  ( M ... k ) ph )  ->  ( k  +  1 )  e.  ( ZZ>= `  M ) )
51 nfv 1539 . . . . . . . . . . . 12  |-  F/ x A. y  e.  ( M ... ( ( k  +  1 )  - 
1 ) ) ps
52 nfsbc1v 3004 . . . . . . . . . . . 12  |-  F/ x [. ( k  +  1 )  /  x ]. ph
5351, 52nfim 1583 . . . . . . . . . . 11  |-  F/ x
( A. y  e.  ( M ... (
( k  +  1 )  -  1 ) ) ps  ->  [. (
k  +  1 )  /  x ]. ph )
54 oveq1 5925 . . . . . . . . . . . . . 14  |-  ( x  =  ( k  +  1 )  ->  (
x  -  1 )  =  ( ( k  +  1 )  - 
1 ) )
5554oveq2d 5934 . . . . . . . . . . . . 13  |-  ( x  =  ( k  +  1 )  ->  ( M ... ( x  - 
1 ) )  =  ( M ... (
( k  +  1 )  -  1 ) ) )
5655raleqdv 2696 . . . . . . . . . . . 12  |-  ( x  =  ( k  +  1 )  ->  ( A. y  e.  ( M ... ( x  - 
1 ) ) ps  <->  A. y  e.  ( M ... ( ( k  +  1 )  - 
1 ) ) ps ) )
57 sbceq1a 2995 . . . . . . . . . . . 12  |-  ( x  =  ( k  +  1 )  ->  ( ph 
<-> 
[. ( k  +  1 )  /  x ]. ph ) )
5856, 57imbi12d 234 . . . . . . . . . . 11  |-  ( x  =  ( k  +  1 )  ->  (
( A. y  e.  ( M ... (
x  -  1 ) ) ps  ->  ph )  <->  ( A. y  e.  ( M ... ( ( k  +  1 )  -  1 ) ) ps  ->  [. ( k  +  1 )  /  x ]. ph ) ) )
5953, 58rspc 2858 . . . . . . . . . 10  |-  ( ( k  +  1 )  e.  ( ZZ>= `  M
)  ->  ( A. x  e.  ( ZZ>= `  M ) ( A. y  e.  ( M ... ( x  -  1 ) ) ps  ->  ph )  ->  ( A. y  e.  ( M ... ( ( k  +  1 )  -  1 ) ) ps  ->  [. ( k  +  1 )  /  x ]. ph ) ) )
6050, 21, 59mpisyl 1457 . . . . . . . . 9  |-  ( ( k  e.  ( ZZ>= `  M )  /\  A. x  e.  ( M ... k ) ph )  ->  ( A. y  e.  ( M ... (
( k  +  1 )  -  1 ) ) ps  ->  [. (
k  +  1 )  /  x ]. ph )
)
6148, 60sylbird 170 . . . . . . . 8  |-  ( ( k  e.  ( ZZ>= `  M )  /\  A. x  e.  ( M ... k ) ph )  ->  ( A. y  e.  ( M ... k
) ps  ->  [. (
k  +  1 )  /  x ]. ph )
)
6241, 61mpd 13 . . . . . . 7  |-  ( ( k  e.  ( ZZ>= `  M )  /\  A. x  e.  ( M ... k ) ph )  ->  [. ( k  +  1 )  /  x ]. ph )
6342peano2zd 9442 . . . . . . . . 9  |-  ( k  e.  ( ZZ>= `  M
)  ->  ( k  +  1 )  e.  ZZ )
6463adantr 276 . . . . . . . 8  |-  ( ( k  e.  ( ZZ>= `  M )  /\  A. x  e.  ( M ... k ) ph )  ->  ( k  +  1 )  e.  ZZ )
65 ralsns 3656 . . . . . . . 8  |-  ( ( k  +  1 )  e.  ZZ  ->  ( A. x  e.  { ( k  +  1 ) } ph  <->  [. ( k  +  1 )  /  x ]. ph ) )
6664, 65syl 14 . . . . . . 7  |-  ( ( k  e.  ( ZZ>= `  M )  /\  A. x  e.  ( M ... k ) ph )  ->  ( A. x  e. 
{ ( k  +  1 ) } ph  <->  [. ( k  +  1 )  /  x ]. ph ) )
6762, 66mpbird 167 . . . . . 6  |-  ( ( k  e.  ( ZZ>= `  M )  /\  A. x  e.  ( M ... k ) ph )  ->  A. x  e.  {
( k  +  1 ) } ph )
68 ralun 3341 . . . . . 6  |-  ( ( A. x  e.  ( M ... k )
ph  /\  A. x  e.  { ( k  +  1 ) } ph )  ->  A. x  e.  ( ( M ... k
)  u.  { ( k  +  1 ) } ) ph )
6938, 67, 68syl2anc 411 . . . . 5  |-  ( ( k  e.  ( ZZ>= `  M )  /\  A. x  e.  ( M ... k ) ph )  ->  A. x  e.  ( ( M ... k
)  u.  { ( k  +  1 ) } ) ph )
70 fzsuc 10135 . . . . . . 7  |-  ( k  e.  ( ZZ>= `  M
)  ->  ( M ... ( k  +  1 ) )  =  ( ( M ... k
)  u.  { ( k  +  1 ) } ) )
7170raleqdv 2696 . . . . . 6  |-  ( k  e.  ( ZZ>= `  M
)  ->  ( A. x  e.  ( M ... ( k  +  1 ) ) ph  <->  A. x  e.  ( ( M ... k )  u.  {
( k  +  1 ) } ) ph ) )
7271adantr 276 . . . . 5  |-  ( ( k  e.  ( ZZ>= `  M )  /\  A. x  e.  ( M ... k ) ph )  ->  ( A. x  e.  ( M ... (
k  +  1 ) ) ph  <->  A. x  e.  ( ( M ... k )  u.  {
( k  +  1 ) } ) ph ) )
7369, 72mpbird 167 . . . 4  |-  ( ( k  e.  ( ZZ>= `  M )  /\  A. x  e.  ( M ... k ) ph )  ->  A. x  e.  ( M ... ( k  +  1 ) )
ph )
7473ex 115 . . 3  |-  ( k  e.  ( ZZ>= `  M
)  ->  ( A. x  e.  ( M ... k ) ph  ->  A. x  e.  ( M ... ( k  +  1 ) ) ph ) )
753, 5, 7, 9, 37, 74uzind4 9653 . 2  |-  ( N  e.  ( ZZ>= `  M
)  ->  A. x  e.  ( M ... N
) ph )
76 eluzfz2 10098 . 2  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  ( M ... N ) )
771, 75, 76rspcdva 2869 1  |-  ( N  e.  ( ZZ>= `  M
)  ->  ch )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2164   A.wral 2472   [.wsbc 2985    u. cun 3151   (/)c0 3446   {csn 3618   class class class wbr 4029   ` cfv 5254  (class class class)co 5918   1c1 7873    + caddc 7875    < clt 8054    - cmin 8190   ZZcz 9317   ZZ>=cuz 9592   ...cfz 10074
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-addcom 7972  ax-addass 7974  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-0id 7980  ax-rnegex 7981  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-inn 8983  df-n0 9241  df-z 9318  df-uz 9593  df-fz 10075
This theorem is referenced by:  nnsinds  10516  nn0sinds  10517
  Copyright terms: Public domain W3C validator