ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uzsinds Unicode version

Theorem uzsinds 10215
Description: Strong (or "total") induction principle over an upper set of integers. (Contributed by Scott Fenton, 16-May-2014.)
Hypotheses
Ref Expression
uzsinds.1  |-  ( x  =  y  ->  ( ph 
<->  ps ) )
uzsinds.2  |-  ( x  =  N  ->  ( ph 
<->  ch ) )
uzsinds.3  |-  ( x  e.  ( ZZ>= `  M
)  ->  ( A. y  e.  ( M ... ( x  -  1 ) ) ps  ->  ph ) )
Assertion
Ref Expression
uzsinds  |-  ( N  e.  ( ZZ>= `  M
)  ->  ch )
Distinct variable groups:    ch, x    x, M, y    x, N    ph, y    ps, x
Allowed substitution hints:    ph( x)    ps( y)    ch( y)    N( y)

Proof of Theorem uzsinds
Dummy variables  k  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 uzsinds.2 . 2  |-  ( x  =  N  ->  ( ph 
<->  ch ) )
2 oveq2 5782 . . . 4  |-  ( w  =  M  ->  ( M ... w )  =  ( M ... M
) )
32raleqdv 2632 . . 3  |-  ( w  =  M  ->  ( A. x  e.  ( M ... w ) ph  <->  A. x  e.  ( M ... M ) ph ) )
4 oveq2 5782 . . . 4  |-  ( w  =  k  ->  ( M ... w )  =  ( M ... k
) )
54raleqdv 2632 . . 3  |-  ( w  =  k  ->  ( A. x  e.  ( M ... w ) ph  <->  A. x  e.  ( M ... k ) ph ) )
6 oveq2 5782 . . . 4  |-  ( w  =  ( k  +  1 )  ->  ( M ... w )  =  ( M ... (
k  +  1 ) ) )
76raleqdv 2632 . . 3  |-  ( w  =  ( k  +  1 )  ->  ( A. x  e.  ( M ... w ) ph  <->  A. x  e.  ( M ... ( k  +  1 ) ) ph ) )
8 oveq2 5782 . . . 4  |-  ( w  =  N  ->  ( M ... w )  =  ( M ... N
) )
98raleqdv 2632 . . 3  |-  ( w  =  N  ->  ( A. x  e.  ( M ... w ) ph  <->  A. x  e.  ( M ... N ) ph ) )
10 ral0 3464 . . . . . . 7  |-  A. y  e.  (/)  ps
11 zre 9058 . . . . . . . . . 10  |-  ( M  e.  ZZ  ->  M  e.  RR )
1211ltm1d 8690 . . . . . . . . 9  |-  ( M  e.  ZZ  ->  ( M  -  1 )  <  M )
13 peano2zm 9092 . . . . . . . . . 10  |-  ( M  e.  ZZ  ->  ( M  -  1 )  e.  ZZ )
14 fzn 9822 . . . . . . . . . 10  |-  ( ( M  e.  ZZ  /\  ( M  -  1
)  e.  ZZ )  ->  ( ( M  -  1 )  < 
M  <->  ( M ... ( M  -  1
) )  =  (/) ) )
1513, 14mpdan 417 . . . . . . . . 9  |-  ( M  e.  ZZ  ->  (
( M  -  1 )  <  M  <->  ( M ... ( M  -  1 ) )  =  (/) ) )
1612, 15mpbid 146 . . . . . . . 8  |-  ( M  e.  ZZ  ->  ( M ... ( M  - 
1 ) )  =  (/) )
1716raleqdv 2632 . . . . . . 7  |-  ( M  e.  ZZ  ->  ( A. y  e.  ( M ... ( M  - 
1 ) ) ps  <->  A. y  e.  (/)  ps )
)
1810, 17mpbiri 167 . . . . . 6  |-  ( M  e.  ZZ  ->  A. y  e.  ( M ... ( M  -  1 ) ) ps )
19 uzid 9340 . . . . . . 7  |-  ( M  e.  ZZ  ->  M  e.  ( ZZ>= `  M )
)
20 uzsinds.3 . . . . . . . 8  |-  ( x  e.  ( ZZ>= `  M
)  ->  ( A. y  e.  ( M ... ( x  -  1 ) ) ps  ->  ph ) )
2120rgen 2485 . . . . . . 7  |-  A. x  e.  ( ZZ>= `  M )
( A. y  e.  ( M ... (
x  -  1 ) ) ps  ->  ph )
22 nfv 1508 . . . . . . . . 9  |-  F/ x A. y  e.  ( M ... ( M  - 
1 ) ) ps
23 nfsbc1v 2927 . . . . . . . . 9  |-  F/ x [. M  /  x ]. ph
2422, 23nfim 1551 . . . . . . . 8  |-  F/ x
( A. y  e.  ( M ... ( M  -  1 ) ) ps  ->  [. M  /  x ]. ph )
25 oveq1 5781 . . . . . . . . . . 11  |-  ( x  =  M  ->  (
x  -  1 )  =  ( M  - 
1 ) )
2625oveq2d 5790 . . . . . . . . . 10  |-  ( x  =  M  ->  ( M ... ( x  - 
1 ) )  =  ( M ... ( M  -  1 ) ) )
2726raleqdv 2632 . . . . . . . . 9  |-  ( x  =  M  ->  ( A. y  e.  ( M ... ( x  - 
1 ) ) ps  <->  A. y  e.  ( M ... ( M  - 
1 ) ) ps ) )
28 sbceq1a 2918 . . . . . . . . 9  |-  ( x  =  M  ->  ( ph 
<-> 
[. M  /  x ]. ph ) )
2927, 28imbi12d 233 . . . . . . . 8  |-  ( x  =  M  ->  (
( A. y  e.  ( M ... (
x  -  1 ) ) ps  ->  ph )  <->  ( A. y  e.  ( M ... ( M  -  1 ) ) ps  ->  [. M  /  x ]. ph ) ) )
3024, 29rspc 2783 . . . . . . 7  |-  ( M  e.  ( ZZ>= `  M
)  ->  ( A. x  e.  ( ZZ>= `  M ) ( A. y  e.  ( M ... ( x  -  1 ) ) ps  ->  ph )  ->  ( A. y  e.  ( M ... ( M  -  1 ) ) ps  ->  [. M  /  x ]. ph ) ) )
3119, 21, 30mpisyl 1422 . . . . . 6  |-  ( M  e.  ZZ  ->  ( A. y  e.  ( M ... ( M  - 
1 ) ) ps 
->  [. M  /  x ]. ph ) )
3218, 31mpd 13 . . . . 5  |-  ( M  e.  ZZ  ->  [. M  /  x ]. ph )
33 ralsns 3562 . . . . 5  |-  ( M  e.  ZZ  ->  ( A. x  e.  { M } ph  <->  [. M  /  x ]. ph ) )
3432, 33mpbird 166 . . . 4  |-  ( M  e.  ZZ  ->  A. x  e.  { M } ph )
35 fzsn 9846 . . . . 5  |-  ( M  e.  ZZ  ->  ( M ... M )  =  { M } )
3635raleqdv 2632 . . . 4  |-  ( M  e.  ZZ  ->  ( A. x  e.  ( M ... M ) ph  <->  A. x  e.  { M } ph ) )
3734, 36mpbird 166 . . 3  |-  ( M  e.  ZZ  ->  A. x  e.  ( M ... M
) ph )
38 simpr 109 . . . . . 6  |-  ( ( k  e.  ( ZZ>= `  M )  /\  A. x  e.  ( M ... k ) ph )  ->  A. x  e.  ( M ... k )
ph )
39 uzsinds.1 . . . . . . . . . 10  |-  ( x  =  y  ->  ( ph 
<->  ps ) )
4039cbvralv 2654 . . . . . . . . 9  |-  ( A. x  e.  ( M ... k ) ph  <->  A. y  e.  ( M ... k
) ps )
4138, 40sylib 121 . . . . . . . 8  |-  ( ( k  e.  ( ZZ>= `  M )  /\  A. x  e.  ( M ... k ) ph )  ->  A. y  e.  ( M ... k ) ps )
42 eluzelz 9335 . . . . . . . . . . . . . 14  |-  ( k  e.  ( ZZ>= `  M
)  ->  k  e.  ZZ )
4342adantr 274 . . . . . . . . . . . . 13  |-  ( ( k  e.  ( ZZ>= `  M )  /\  A. x  e.  ( M ... k ) ph )  ->  k  e.  ZZ )
4443zcnd 9174 . . . . . . . . . . . 12  |-  ( ( k  e.  ( ZZ>= `  M )  /\  A. x  e.  ( M ... k ) ph )  ->  k  e.  CC )
45 1cnd 7782 . . . . . . . . . . . 12  |-  ( ( k  e.  ( ZZ>= `  M )  /\  A. x  e.  ( M ... k ) ph )  ->  1  e.  CC )
4644, 45pncand 8074 . . . . . . . . . . 11  |-  ( ( k  e.  ( ZZ>= `  M )  /\  A. x  e.  ( M ... k ) ph )  ->  ( ( k  +  1 )  -  1 )  =  k )
4746oveq2d 5790 . . . . . . . . . 10  |-  ( ( k  e.  ( ZZ>= `  M )  /\  A. x  e.  ( M ... k ) ph )  ->  ( M ... (
( k  +  1 )  -  1 ) )  =  ( M ... k ) )
4847raleqdv 2632 . . . . . . . . 9  |-  ( ( k  e.  ( ZZ>= `  M )  /\  A. x  e.  ( M ... k ) ph )  ->  ( A. y  e.  ( M ... (
( k  +  1 )  -  1 ) ) ps  <->  A. y  e.  ( M ... k
) ps ) )
49 peano2uz 9378 . . . . . . . . . . 11  |-  ( k  e.  ( ZZ>= `  M
)  ->  ( k  +  1 )  e.  ( ZZ>= `  M )
)
5049adantr 274 . . . . . . . . . 10  |-  ( ( k  e.  ( ZZ>= `  M )  /\  A. x  e.  ( M ... k ) ph )  ->  ( k  +  1 )  e.  ( ZZ>= `  M ) )
51 nfv 1508 . . . . . . . . . . . 12  |-  F/ x A. y  e.  ( M ... ( ( k  +  1 )  - 
1 ) ) ps
52 nfsbc1v 2927 . . . . . . . . . . . 12  |-  F/ x [. ( k  +  1 )  /  x ]. ph
5351, 52nfim 1551 . . . . . . . . . . 11  |-  F/ x
( A. y  e.  ( M ... (
( k  +  1 )  -  1 ) ) ps  ->  [. (
k  +  1 )  /  x ]. ph )
54 oveq1 5781 . . . . . . . . . . . . . 14  |-  ( x  =  ( k  +  1 )  ->  (
x  -  1 )  =  ( ( k  +  1 )  - 
1 ) )
5554oveq2d 5790 . . . . . . . . . . . . 13  |-  ( x  =  ( k  +  1 )  ->  ( M ... ( x  - 
1 ) )  =  ( M ... (
( k  +  1 )  -  1 ) ) )
5655raleqdv 2632 . . . . . . . . . . . 12  |-  ( x  =  ( k  +  1 )  ->  ( A. y  e.  ( M ... ( x  - 
1 ) ) ps  <->  A. y  e.  ( M ... ( ( k  +  1 )  - 
1 ) ) ps ) )
57 sbceq1a 2918 . . . . . . . . . . . 12  |-  ( x  =  ( k  +  1 )  ->  ( ph 
<-> 
[. ( k  +  1 )  /  x ]. ph ) )
5856, 57imbi12d 233 . . . . . . . . . . 11  |-  ( x  =  ( k  +  1 )  ->  (
( A. y  e.  ( M ... (
x  -  1 ) ) ps  ->  ph )  <->  ( A. y  e.  ( M ... ( ( k  +  1 )  -  1 ) ) ps  ->  [. ( k  +  1 )  /  x ]. ph ) ) )
5953, 58rspc 2783 . . . . . . . . . 10  |-  ( ( k  +  1 )  e.  ( ZZ>= `  M
)  ->  ( A. x  e.  ( ZZ>= `  M ) ( A. y  e.  ( M ... ( x  -  1 ) ) ps  ->  ph )  ->  ( A. y  e.  ( M ... ( ( k  +  1 )  -  1 ) ) ps  ->  [. ( k  +  1 )  /  x ]. ph ) ) )
6050, 21, 59mpisyl 1422 . . . . . . . . 9  |-  ( ( k  e.  ( ZZ>= `  M )  /\  A. x  e.  ( M ... k ) ph )  ->  ( A. y  e.  ( M ... (
( k  +  1 )  -  1 ) ) ps  ->  [. (
k  +  1 )  /  x ]. ph )
)
6148, 60sylbird 169 . . . . . . . 8  |-  ( ( k  e.  ( ZZ>= `  M )  /\  A. x  e.  ( M ... k ) ph )  ->  ( A. y  e.  ( M ... k
) ps  ->  [. (
k  +  1 )  /  x ]. ph )
)
6241, 61mpd 13 . . . . . . 7  |-  ( ( k  e.  ( ZZ>= `  M )  /\  A. x  e.  ( M ... k ) ph )  ->  [. ( k  +  1 )  /  x ]. ph )
6342peano2zd 9176 . . . . . . . . 9  |-  ( k  e.  ( ZZ>= `  M
)  ->  ( k  +  1 )  e.  ZZ )
6463adantr 274 . . . . . . . 8  |-  ( ( k  e.  ( ZZ>= `  M )  /\  A. x  e.  ( M ... k ) ph )  ->  ( k  +  1 )  e.  ZZ )
65 ralsns 3562 . . . . . . . 8  |-  ( ( k  +  1 )  e.  ZZ  ->  ( A. x  e.  { ( k  +  1 ) } ph  <->  [. ( k  +  1 )  /  x ]. ph ) )
6664, 65syl 14 . . . . . . 7  |-  ( ( k  e.  ( ZZ>= `  M )  /\  A. x  e.  ( M ... k ) ph )  ->  ( A. x  e. 
{ ( k  +  1 ) } ph  <->  [. ( k  +  1 )  /  x ]. ph ) )
6762, 66mpbird 166 . . . . . 6  |-  ( ( k  e.  ( ZZ>= `  M )  /\  A. x  e.  ( M ... k ) ph )  ->  A. x  e.  {
( k  +  1 ) } ph )
68 ralun 3258 . . . . . 6  |-  ( ( A. x  e.  ( M ... k )
ph  /\  A. x  e.  { ( k  +  1 ) } ph )  ->  A. x  e.  ( ( M ... k
)  u.  { ( k  +  1 ) } ) ph )
6938, 67, 68syl2anc 408 . . . . 5  |-  ( ( k  e.  ( ZZ>= `  M )  /\  A. x  e.  ( M ... k ) ph )  ->  A. x  e.  ( ( M ... k
)  u.  { ( k  +  1 ) } ) ph )
70 fzsuc 9849 . . . . . . 7  |-  ( k  e.  ( ZZ>= `  M
)  ->  ( M ... ( k  +  1 ) )  =  ( ( M ... k
)  u.  { ( k  +  1 ) } ) )
7170raleqdv 2632 . . . . . 6  |-  ( k  e.  ( ZZ>= `  M
)  ->  ( A. x  e.  ( M ... ( k  +  1 ) ) ph  <->  A. x  e.  ( ( M ... k )  u.  {
( k  +  1 ) } ) ph ) )
7271adantr 274 . . . . 5  |-  ( ( k  e.  ( ZZ>= `  M )  /\  A. x  e.  ( M ... k ) ph )  ->  ( A. x  e.  ( M ... (
k  +  1 ) ) ph  <->  A. x  e.  ( ( M ... k )  u.  {
( k  +  1 ) } ) ph ) )
7369, 72mpbird 166 . . . 4  |-  ( ( k  e.  ( ZZ>= `  M )  /\  A. x  e.  ( M ... k ) ph )  ->  A. x  e.  ( M ... ( k  +  1 ) )
ph )
7473ex 114 . . 3  |-  ( k  e.  ( ZZ>= `  M
)  ->  ( A. x  e.  ( M ... k ) ph  ->  A. x  e.  ( M ... ( k  +  1 ) ) ph ) )
753, 5, 7, 9, 37, 74uzind4 9383 . 2  |-  ( N  e.  ( ZZ>= `  M
)  ->  A. x  e.  ( M ... N
) ph )
76 eluzfz2 9812 . 2  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  ( M ... N ) )
771, 75, 76rspcdva 2794 1  |-  ( N  e.  ( ZZ>= `  M
)  ->  ch )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1331    e. wcel 1480   A.wral 2416   [.wsbc 2909    u. cun 3069   (/)c0 3363   {csn 3527   class class class wbr 3929   ` cfv 5123  (class class class)co 5774   1c1 7621    + caddc 7623    < clt 7800    - cmin 7933   ZZcz 9054   ZZ>=cuz 9326   ...cfz 9790
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-addcom 7720  ax-addass 7722  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-0id 7728  ax-rnegex 7729  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-apti 7735  ax-pre-ltadd 7736
This theorem depends on definitions:  df-bi 116  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-br 3930  df-opab 3990  df-mpt 3991  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-inn 8721  df-n0 8978  df-z 9055  df-uz 9327  df-fz 9791
This theorem is referenced by:  nnsinds  10216  nn0sinds  10217
  Copyright terms: Public domain W3C validator