| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > uzsinds | Unicode version | ||
| Description: Strong (or "total") induction principle over an upper set of integers. (Contributed by Scott Fenton, 16-May-2014.) |
| Ref | Expression |
|---|---|
| uzsinds.1 |
|
| uzsinds.2 |
|
| uzsinds.3 |
|
| Ref | Expression |
|---|---|
| uzsinds |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uzsinds.2 |
. 2
| |
| 2 | oveq2 6009 |
. . . 4
| |
| 3 | 2 | raleqdv 2734 |
. . 3
|
| 4 | oveq2 6009 |
. . . 4
| |
| 5 | 4 | raleqdv 2734 |
. . 3
|
| 6 | oveq2 6009 |
. . . 4
| |
| 7 | 6 | raleqdv 2734 |
. . 3
|
| 8 | oveq2 6009 |
. . . 4
| |
| 9 | 8 | raleqdv 2734 |
. . 3
|
| 10 | ral0 3593 |
. . . . . . 7
| |
| 11 | zre 9450 |
. . . . . . . . . 10
| |
| 12 | 11 | ltm1d 9079 |
. . . . . . . . 9
|
| 13 | peano2zm 9484 |
. . . . . . . . . 10
| |
| 14 | fzn 10238 |
. . . . . . . . . 10
| |
| 15 | 13, 14 | mpdan 421 |
. . . . . . . . 9
|
| 16 | 12, 15 | mpbid 147 |
. . . . . . . 8
|
| 17 | 16 | raleqdv 2734 |
. . . . . . 7
|
| 18 | 10, 17 | mpbiri 168 |
. . . . . 6
|
| 19 | uzid 9736 |
. . . . . . 7
| |
| 20 | uzsinds.3 |
. . . . . . . 8
| |
| 21 | 20 | rgen 2583 |
. . . . . . 7
|
| 22 | nfv 1574 |
. . . . . . . . 9
| |
| 23 | nfsbc1v 3047 |
. . . . . . . . 9
| |
| 24 | 22, 23 | nfim 1618 |
. . . . . . . 8
|
| 25 | oveq1 6008 |
. . . . . . . . . . 11
| |
| 26 | 25 | oveq2d 6017 |
. . . . . . . . . 10
|
| 27 | 26 | raleqdv 2734 |
. . . . . . . . 9
|
| 28 | sbceq1a 3038 |
. . . . . . . . 9
| |
| 29 | 27, 28 | imbi12d 234 |
. . . . . . . 8
|
| 30 | 24, 29 | rspc 2901 |
. . . . . . 7
|
| 31 | 19, 21, 30 | mpisyl 1489 |
. . . . . 6
|
| 32 | 18, 31 | mpd 13 |
. . . . 5
|
| 33 | ralsns 3704 |
. . . . 5
| |
| 34 | 32, 33 | mpbird 167 |
. . . 4
|
| 35 | fzsn 10262 |
. . . . 5
| |
| 36 | 35 | raleqdv 2734 |
. . . 4
|
| 37 | 34, 36 | mpbird 167 |
. . 3
|
| 38 | simpr 110 |
. . . . . 6
| |
| 39 | uzsinds.1 |
. . . . . . . . . 10
| |
| 40 | 39 | cbvralv 2765 |
. . . . . . . . 9
|
| 41 | 38, 40 | sylib 122 |
. . . . . . . 8
|
| 42 | eluzelz 9731 |
. . . . . . . . . . . . . 14
| |
| 43 | 42 | adantr 276 |
. . . . . . . . . . . . 13
|
| 44 | 43 | zcnd 9570 |
. . . . . . . . . . . 12
|
| 45 | 1cnd 8162 |
. . . . . . . . . . . 12
| |
| 46 | 44, 45 | pncand 8458 |
. . . . . . . . . . 11
|
| 47 | 46 | oveq2d 6017 |
. . . . . . . . . 10
|
| 48 | 47 | raleqdv 2734 |
. . . . . . . . 9
|
| 49 | peano2uz 9778 |
. . . . . . . . . . 11
| |
| 50 | 49 | adantr 276 |
. . . . . . . . . 10
|
| 51 | nfv 1574 |
. . . . . . . . . . . 12
| |
| 52 | nfsbc1v 3047 |
. . . . . . . . . . . 12
| |
| 53 | 51, 52 | nfim 1618 |
. . . . . . . . . . 11
|
| 54 | oveq1 6008 |
. . . . . . . . . . . . . 14
| |
| 55 | 54 | oveq2d 6017 |
. . . . . . . . . . . . 13
|
| 56 | 55 | raleqdv 2734 |
. . . . . . . . . . . 12
|
| 57 | sbceq1a 3038 |
. . . . . . . . . . . 12
| |
| 58 | 56, 57 | imbi12d 234 |
. . . . . . . . . . 11
|
| 59 | 53, 58 | rspc 2901 |
. . . . . . . . . 10
|
| 60 | 50, 21, 59 | mpisyl 1489 |
. . . . . . . . 9
|
| 61 | 48, 60 | sylbird 170 |
. . . . . . . 8
|
| 62 | 41, 61 | mpd 13 |
. . . . . . 7
|
| 63 | 42 | peano2zd 9572 |
. . . . . . . . 9
|
| 64 | 63 | adantr 276 |
. . . . . . . 8
|
| 65 | ralsns 3704 |
. . . . . . . 8
| |
| 66 | 64, 65 | syl 14 |
. . . . . . 7
|
| 67 | 62, 66 | mpbird 167 |
. . . . . 6
|
| 68 | ralun 3386 |
. . . . . 6
| |
| 69 | 38, 67, 68 | syl2anc 411 |
. . . . 5
|
| 70 | fzsuc 10265 |
. . . . . . 7
| |
| 71 | 70 | raleqdv 2734 |
. . . . . 6
|
| 72 | 71 | adantr 276 |
. . . . 5
|
| 73 | 69, 72 | mpbird 167 |
. . . 4
|
| 74 | 73 | ex 115 |
. . 3
|
| 75 | 3, 5, 7, 9, 37, 74 | uzind4 9783 |
. 2
|
| 76 | eluzfz2 10228 |
. 2
| |
| 77 | 1, 75, 76 | rspcdva 2912 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-cnex 8090 ax-resscn 8091 ax-1cn 8092 ax-1re 8093 ax-icn 8094 ax-addcl 8095 ax-addrcl 8096 ax-mulcl 8097 ax-addcom 8099 ax-addass 8101 ax-distr 8103 ax-i2m1 8104 ax-0lt1 8105 ax-0id 8107 ax-rnegex 8108 ax-cnre 8110 ax-pre-ltirr 8111 ax-pre-ltwlin 8112 ax-pre-lttrn 8113 ax-pre-apti 8114 ax-pre-ltadd 8115 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-fv 5326 df-riota 5954 df-ov 6004 df-oprab 6005 df-mpo 6006 df-pnf 8183 df-mnf 8184 df-xr 8185 df-ltxr 8186 df-le 8187 df-sub 8319 df-neg 8320 df-inn 9111 df-n0 9370 df-z 9447 df-uz 9723 df-fz 10205 |
| This theorem is referenced by: nnsinds 10667 nn0sinds 10668 |
| Copyright terms: Public domain | W3C validator |