| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > uzsinds | Unicode version | ||
| Description: Strong (or "total") induction principle over an upper set of integers. (Contributed by Scott Fenton, 16-May-2014.) |
| Ref | Expression |
|---|---|
| uzsinds.1 |
|
| uzsinds.2 |
|
| uzsinds.3 |
|
| Ref | Expression |
|---|---|
| uzsinds |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uzsinds.2 |
. 2
| |
| 2 | oveq2 5954 |
. . . 4
| |
| 3 | 2 | raleqdv 2708 |
. . 3
|
| 4 | oveq2 5954 |
. . . 4
| |
| 5 | 4 | raleqdv 2708 |
. . 3
|
| 6 | oveq2 5954 |
. . . 4
| |
| 7 | 6 | raleqdv 2708 |
. . 3
|
| 8 | oveq2 5954 |
. . . 4
| |
| 9 | 8 | raleqdv 2708 |
. . 3
|
| 10 | ral0 3562 |
. . . . . . 7
| |
| 11 | zre 9378 |
. . . . . . . . . 10
| |
| 12 | 11 | ltm1d 9007 |
. . . . . . . . 9
|
| 13 | peano2zm 9412 |
. . . . . . . . . 10
| |
| 14 | fzn 10166 |
. . . . . . . . . 10
| |
| 15 | 13, 14 | mpdan 421 |
. . . . . . . . 9
|
| 16 | 12, 15 | mpbid 147 |
. . . . . . . 8
|
| 17 | 16 | raleqdv 2708 |
. . . . . . 7
|
| 18 | 10, 17 | mpbiri 168 |
. . . . . 6
|
| 19 | uzid 9664 |
. . . . . . 7
| |
| 20 | uzsinds.3 |
. . . . . . . 8
| |
| 21 | 20 | rgen 2559 |
. . . . . . 7
|
| 22 | nfv 1551 |
. . . . . . . . 9
| |
| 23 | nfsbc1v 3017 |
. . . . . . . . 9
| |
| 24 | 22, 23 | nfim 1595 |
. . . . . . . 8
|
| 25 | oveq1 5953 |
. . . . . . . . . . 11
| |
| 26 | 25 | oveq2d 5962 |
. . . . . . . . . 10
|
| 27 | 26 | raleqdv 2708 |
. . . . . . . . 9
|
| 28 | sbceq1a 3008 |
. . . . . . . . 9
| |
| 29 | 27, 28 | imbi12d 234 |
. . . . . . . 8
|
| 30 | 24, 29 | rspc 2871 |
. . . . . . 7
|
| 31 | 19, 21, 30 | mpisyl 1466 |
. . . . . 6
|
| 32 | 18, 31 | mpd 13 |
. . . . 5
|
| 33 | ralsns 3671 |
. . . . 5
| |
| 34 | 32, 33 | mpbird 167 |
. . . 4
|
| 35 | fzsn 10190 |
. . . . 5
| |
| 36 | 35 | raleqdv 2708 |
. . . 4
|
| 37 | 34, 36 | mpbird 167 |
. . 3
|
| 38 | simpr 110 |
. . . . . 6
| |
| 39 | uzsinds.1 |
. . . . . . . . . 10
| |
| 40 | 39 | cbvralv 2738 |
. . . . . . . . 9
|
| 41 | 38, 40 | sylib 122 |
. . . . . . . 8
|
| 42 | eluzelz 9659 |
. . . . . . . . . . . . . 14
| |
| 43 | 42 | adantr 276 |
. . . . . . . . . . . . 13
|
| 44 | 43 | zcnd 9498 |
. . . . . . . . . . . 12
|
| 45 | 1cnd 8090 |
. . . . . . . . . . . 12
| |
| 46 | 44, 45 | pncand 8386 |
. . . . . . . . . . 11
|
| 47 | 46 | oveq2d 5962 |
. . . . . . . . . 10
|
| 48 | 47 | raleqdv 2708 |
. . . . . . . . 9
|
| 49 | peano2uz 9706 |
. . . . . . . . . . 11
| |
| 50 | 49 | adantr 276 |
. . . . . . . . . 10
|
| 51 | nfv 1551 |
. . . . . . . . . . . 12
| |
| 52 | nfsbc1v 3017 |
. . . . . . . . . . . 12
| |
| 53 | 51, 52 | nfim 1595 |
. . . . . . . . . . 11
|
| 54 | oveq1 5953 |
. . . . . . . . . . . . . 14
| |
| 55 | 54 | oveq2d 5962 |
. . . . . . . . . . . . 13
|
| 56 | 55 | raleqdv 2708 |
. . . . . . . . . . . 12
|
| 57 | sbceq1a 3008 |
. . . . . . . . . . . 12
| |
| 58 | 56, 57 | imbi12d 234 |
. . . . . . . . . . 11
|
| 59 | 53, 58 | rspc 2871 |
. . . . . . . . . 10
|
| 60 | 50, 21, 59 | mpisyl 1466 |
. . . . . . . . 9
|
| 61 | 48, 60 | sylbird 170 |
. . . . . . . 8
|
| 62 | 41, 61 | mpd 13 |
. . . . . . 7
|
| 63 | 42 | peano2zd 9500 |
. . . . . . . . 9
|
| 64 | 63 | adantr 276 |
. . . . . . . 8
|
| 65 | ralsns 3671 |
. . . . . . . 8
| |
| 66 | 64, 65 | syl 14 |
. . . . . . 7
|
| 67 | 62, 66 | mpbird 167 |
. . . . . 6
|
| 68 | ralun 3355 |
. . . . . 6
| |
| 69 | 38, 67, 68 | syl2anc 411 |
. . . . 5
|
| 70 | fzsuc 10193 |
. . . . . . 7
| |
| 71 | 70 | raleqdv 2708 |
. . . . . 6
|
| 72 | 71 | adantr 276 |
. . . . 5
|
| 73 | 69, 72 | mpbird 167 |
. . . 4
|
| 74 | 73 | ex 115 |
. . 3
|
| 75 | 3, 5, 7, 9, 37, 74 | uzind4 9711 |
. 2
|
| 76 | eluzfz2 10156 |
. 2
| |
| 77 | 1, 75, 76 | rspcdva 2882 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4163 ax-pow 4219 ax-pr 4254 ax-un 4481 ax-setind 4586 ax-cnex 8018 ax-resscn 8019 ax-1cn 8020 ax-1re 8021 ax-icn 8022 ax-addcl 8023 ax-addrcl 8024 ax-mulcl 8025 ax-addcom 8027 ax-addass 8029 ax-distr 8031 ax-i2m1 8032 ax-0lt1 8033 ax-0id 8035 ax-rnegex 8036 ax-cnre 8038 ax-pre-ltirr 8039 ax-pre-ltwlin 8040 ax-pre-lttrn 8041 ax-pre-apti 8042 ax-pre-ltadd 8043 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-reu 2491 df-rab 2493 df-v 2774 df-sbc 2999 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-br 4046 df-opab 4107 df-mpt 4108 df-id 4341 df-xp 4682 df-rel 4683 df-cnv 4684 df-co 4685 df-dm 4686 df-rn 4687 df-res 4688 df-ima 4689 df-iota 5233 df-fun 5274 df-fn 5275 df-f 5276 df-fv 5280 df-riota 5901 df-ov 5949 df-oprab 5950 df-mpo 5951 df-pnf 8111 df-mnf 8112 df-xr 8113 df-ltxr 8114 df-le 8115 df-sub 8247 df-neg 8248 df-inn 9039 df-n0 9298 df-z 9375 df-uz 9651 df-fz 10133 |
| This theorem is referenced by: nnsinds 10592 nn0sinds 10593 |
| Copyright terms: Public domain | W3C validator |