ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uzsinds Unicode version

Theorem uzsinds 10626
Description: Strong (or "total") induction principle over an upper set of integers. (Contributed by Scott Fenton, 16-May-2014.)
Hypotheses
Ref Expression
uzsinds.1  |-  ( x  =  y  ->  ( ph 
<->  ps ) )
uzsinds.2  |-  ( x  =  N  ->  ( ph 
<->  ch ) )
uzsinds.3  |-  ( x  e.  ( ZZ>= `  M
)  ->  ( A. y  e.  ( M ... ( x  -  1 ) ) ps  ->  ph ) )
Assertion
Ref Expression
uzsinds  |-  ( N  e.  ( ZZ>= `  M
)  ->  ch )
Distinct variable groups:    ch, x    x, M, y    x, N    ph, y    ps, x
Allowed substitution hints:    ph( x)    ps( y)    ch( y)    N( y)

Proof of Theorem uzsinds
Dummy variables  k  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 uzsinds.2 . 2  |-  ( x  =  N  ->  ( ph 
<->  ch ) )
2 oveq2 5975 . . . 4  |-  ( w  =  M  ->  ( M ... w )  =  ( M ... M
) )
32raleqdv 2711 . . 3  |-  ( w  =  M  ->  ( A. x  e.  ( M ... w ) ph  <->  A. x  e.  ( M ... M ) ph ) )
4 oveq2 5975 . . . 4  |-  ( w  =  k  ->  ( M ... w )  =  ( M ... k
) )
54raleqdv 2711 . . 3  |-  ( w  =  k  ->  ( A. x  e.  ( M ... w ) ph  <->  A. x  e.  ( M ... k ) ph ) )
6 oveq2 5975 . . . 4  |-  ( w  =  ( k  +  1 )  ->  ( M ... w )  =  ( M ... (
k  +  1 ) ) )
76raleqdv 2711 . . 3  |-  ( w  =  ( k  +  1 )  ->  ( A. x  e.  ( M ... w ) ph  <->  A. x  e.  ( M ... ( k  +  1 ) ) ph ) )
8 oveq2 5975 . . . 4  |-  ( w  =  N  ->  ( M ... w )  =  ( M ... N
) )
98raleqdv 2711 . . 3  |-  ( w  =  N  ->  ( A. x  e.  ( M ... w ) ph  <->  A. x  e.  ( M ... N ) ph ) )
10 ral0 3570 . . . . . . 7  |-  A. y  e.  (/)  ps
11 zre 9411 . . . . . . . . . 10  |-  ( M  e.  ZZ  ->  M  e.  RR )
1211ltm1d 9040 . . . . . . . . 9  |-  ( M  e.  ZZ  ->  ( M  -  1 )  <  M )
13 peano2zm 9445 . . . . . . . . . 10  |-  ( M  e.  ZZ  ->  ( M  -  1 )  e.  ZZ )
14 fzn 10199 . . . . . . . . . 10  |-  ( ( M  e.  ZZ  /\  ( M  -  1
)  e.  ZZ )  ->  ( ( M  -  1 )  < 
M  <->  ( M ... ( M  -  1
) )  =  (/) ) )
1513, 14mpdan 421 . . . . . . . . 9  |-  ( M  e.  ZZ  ->  (
( M  -  1 )  <  M  <->  ( M ... ( M  -  1 ) )  =  (/) ) )
1612, 15mpbid 147 . . . . . . . 8  |-  ( M  e.  ZZ  ->  ( M ... ( M  - 
1 ) )  =  (/) )
1716raleqdv 2711 . . . . . . 7  |-  ( M  e.  ZZ  ->  ( A. y  e.  ( M ... ( M  - 
1 ) ) ps  <->  A. y  e.  (/)  ps )
)
1810, 17mpbiri 168 . . . . . 6  |-  ( M  e.  ZZ  ->  A. y  e.  ( M ... ( M  -  1 ) ) ps )
19 uzid 9697 . . . . . . 7  |-  ( M  e.  ZZ  ->  M  e.  ( ZZ>= `  M )
)
20 uzsinds.3 . . . . . . . 8  |-  ( x  e.  ( ZZ>= `  M
)  ->  ( A. y  e.  ( M ... ( x  -  1 ) ) ps  ->  ph ) )
2120rgen 2561 . . . . . . 7  |-  A. x  e.  ( ZZ>= `  M )
( A. y  e.  ( M ... (
x  -  1 ) ) ps  ->  ph )
22 nfv 1552 . . . . . . . . 9  |-  F/ x A. y  e.  ( M ... ( M  - 
1 ) ) ps
23 nfsbc1v 3024 . . . . . . . . 9  |-  F/ x [. M  /  x ]. ph
2422, 23nfim 1596 . . . . . . . 8  |-  F/ x
( A. y  e.  ( M ... ( M  -  1 ) ) ps  ->  [. M  /  x ]. ph )
25 oveq1 5974 . . . . . . . . . . 11  |-  ( x  =  M  ->  (
x  -  1 )  =  ( M  - 
1 ) )
2625oveq2d 5983 . . . . . . . . . 10  |-  ( x  =  M  ->  ( M ... ( x  - 
1 ) )  =  ( M ... ( M  -  1 ) ) )
2726raleqdv 2711 . . . . . . . . 9  |-  ( x  =  M  ->  ( A. y  e.  ( M ... ( x  - 
1 ) ) ps  <->  A. y  e.  ( M ... ( M  - 
1 ) ) ps ) )
28 sbceq1a 3015 . . . . . . . . 9  |-  ( x  =  M  ->  ( ph 
<-> 
[. M  /  x ]. ph ) )
2927, 28imbi12d 234 . . . . . . . 8  |-  ( x  =  M  ->  (
( A. y  e.  ( M ... (
x  -  1 ) ) ps  ->  ph )  <->  ( A. y  e.  ( M ... ( M  -  1 ) ) ps  ->  [. M  /  x ]. ph ) ) )
3024, 29rspc 2878 . . . . . . 7  |-  ( M  e.  ( ZZ>= `  M
)  ->  ( A. x  e.  ( ZZ>= `  M ) ( A. y  e.  ( M ... ( x  -  1 ) ) ps  ->  ph )  ->  ( A. y  e.  ( M ... ( M  -  1 ) ) ps  ->  [. M  /  x ]. ph ) ) )
3119, 21, 30mpisyl 1467 . . . . . 6  |-  ( M  e.  ZZ  ->  ( A. y  e.  ( M ... ( M  - 
1 ) ) ps 
->  [. M  /  x ]. ph ) )
3218, 31mpd 13 . . . . 5  |-  ( M  e.  ZZ  ->  [. M  /  x ]. ph )
33 ralsns 3681 . . . . 5  |-  ( M  e.  ZZ  ->  ( A. x  e.  { M } ph  <->  [. M  /  x ]. ph ) )
3432, 33mpbird 167 . . . 4  |-  ( M  e.  ZZ  ->  A. x  e.  { M } ph )
35 fzsn 10223 . . . . 5  |-  ( M  e.  ZZ  ->  ( M ... M )  =  { M } )
3635raleqdv 2711 . . . 4  |-  ( M  e.  ZZ  ->  ( A. x  e.  ( M ... M ) ph  <->  A. x  e.  { M } ph ) )
3734, 36mpbird 167 . . 3  |-  ( M  e.  ZZ  ->  A. x  e.  ( M ... M
) ph )
38 simpr 110 . . . . . 6  |-  ( ( k  e.  ( ZZ>= `  M )  /\  A. x  e.  ( M ... k ) ph )  ->  A. x  e.  ( M ... k )
ph )
39 uzsinds.1 . . . . . . . . . 10  |-  ( x  =  y  ->  ( ph 
<->  ps ) )
4039cbvralv 2742 . . . . . . . . 9  |-  ( A. x  e.  ( M ... k ) ph  <->  A. y  e.  ( M ... k
) ps )
4138, 40sylib 122 . . . . . . . 8  |-  ( ( k  e.  ( ZZ>= `  M )  /\  A. x  e.  ( M ... k ) ph )  ->  A. y  e.  ( M ... k ) ps )
42 eluzelz 9692 . . . . . . . . . . . . . 14  |-  ( k  e.  ( ZZ>= `  M
)  ->  k  e.  ZZ )
4342adantr 276 . . . . . . . . . . . . 13  |-  ( ( k  e.  ( ZZ>= `  M )  /\  A. x  e.  ( M ... k ) ph )  ->  k  e.  ZZ )
4443zcnd 9531 . . . . . . . . . . . 12  |-  ( ( k  e.  ( ZZ>= `  M )  /\  A. x  e.  ( M ... k ) ph )  ->  k  e.  CC )
45 1cnd 8123 . . . . . . . . . . . 12  |-  ( ( k  e.  ( ZZ>= `  M )  /\  A. x  e.  ( M ... k ) ph )  ->  1  e.  CC )
4644, 45pncand 8419 . . . . . . . . . . 11  |-  ( ( k  e.  ( ZZ>= `  M )  /\  A. x  e.  ( M ... k ) ph )  ->  ( ( k  +  1 )  -  1 )  =  k )
4746oveq2d 5983 . . . . . . . . . 10  |-  ( ( k  e.  ( ZZ>= `  M )  /\  A. x  e.  ( M ... k ) ph )  ->  ( M ... (
( k  +  1 )  -  1 ) )  =  ( M ... k ) )
4847raleqdv 2711 . . . . . . . . 9  |-  ( ( k  e.  ( ZZ>= `  M )  /\  A. x  e.  ( M ... k ) ph )  ->  ( A. y  e.  ( M ... (
( k  +  1 )  -  1 ) ) ps  <->  A. y  e.  ( M ... k
) ps ) )
49 peano2uz 9739 . . . . . . . . . . 11  |-  ( k  e.  ( ZZ>= `  M
)  ->  ( k  +  1 )  e.  ( ZZ>= `  M )
)
5049adantr 276 . . . . . . . . . 10  |-  ( ( k  e.  ( ZZ>= `  M )  /\  A. x  e.  ( M ... k ) ph )  ->  ( k  +  1 )  e.  ( ZZ>= `  M ) )
51 nfv 1552 . . . . . . . . . . . 12  |-  F/ x A. y  e.  ( M ... ( ( k  +  1 )  - 
1 ) ) ps
52 nfsbc1v 3024 . . . . . . . . . . . 12  |-  F/ x [. ( k  +  1 )  /  x ]. ph
5351, 52nfim 1596 . . . . . . . . . . 11  |-  F/ x
( A. y  e.  ( M ... (
( k  +  1 )  -  1 ) ) ps  ->  [. (
k  +  1 )  /  x ]. ph )
54 oveq1 5974 . . . . . . . . . . . . . 14  |-  ( x  =  ( k  +  1 )  ->  (
x  -  1 )  =  ( ( k  +  1 )  - 
1 ) )
5554oveq2d 5983 . . . . . . . . . . . . 13  |-  ( x  =  ( k  +  1 )  ->  ( M ... ( x  - 
1 ) )  =  ( M ... (
( k  +  1 )  -  1 ) ) )
5655raleqdv 2711 . . . . . . . . . . . 12  |-  ( x  =  ( k  +  1 )  ->  ( A. y  e.  ( M ... ( x  - 
1 ) ) ps  <->  A. y  e.  ( M ... ( ( k  +  1 )  - 
1 ) ) ps ) )
57 sbceq1a 3015 . . . . . . . . . . . 12  |-  ( x  =  ( k  +  1 )  ->  ( ph 
<-> 
[. ( k  +  1 )  /  x ]. ph ) )
5856, 57imbi12d 234 . . . . . . . . . . 11  |-  ( x  =  ( k  +  1 )  ->  (
( A. y  e.  ( M ... (
x  -  1 ) ) ps  ->  ph )  <->  ( A. y  e.  ( M ... ( ( k  +  1 )  -  1 ) ) ps  ->  [. ( k  +  1 )  /  x ]. ph ) ) )
5953, 58rspc 2878 . . . . . . . . . 10  |-  ( ( k  +  1 )  e.  ( ZZ>= `  M
)  ->  ( A. x  e.  ( ZZ>= `  M ) ( A. y  e.  ( M ... ( x  -  1 ) ) ps  ->  ph )  ->  ( A. y  e.  ( M ... ( ( k  +  1 )  -  1 ) ) ps  ->  [. ( k  +  1 )  /  x ]. ph ) ) )
6050, 21, 59mpisyl 1467 . . . . . . . . 9  |-  ( ( k  e.  ( ZZ>= `  M )  /\  A. x  e.  ( M ... k ) ph )  ->  ( A. y  e.  ( M ... (
( k  +  1 )  -  1 ) ) ps  ->  [. (
k  +  1 )  /  x ]. ph )
)
6148, 60sylbird 170 . . . . . . . 8  |-  ( ( k  e.  ( ZZ>= `  M )  /\  A. x  e.  ( M ... k ) ph )  ->  ( A. y  e.  ( M ... k
) ps  ->  [. (
k  +  1 )  /  x ]. ph )
)
6241, 61mpd 13 . . . . . . 7  |-  ( ( k  e.  ( ZZ>= `  M )  /\  A. x  e.  ( M ... k ) ph )  ->  [. ( k  +  1 )  /  x ]. ph )
6342peano2zd 9533 . . . . . . . . 9  |-  ( k  e.  ( ZZ>= `  M
)  ->  ( k  +  1 )  e.  ZZ )
6463adantr 276 . . . . . . . 8  |-  ( ( k  e.  ( ZZ>= `  M )  /\  A. x  e.  ( M ... k ) ph )  ->  ( k  +  1 )  e.  ZZ )
65 ralsns 3681 . . . . . . . 8  |-  ( ( k  +  1 )  e.  ZZ  ->  ( A. x  e.  { ( k  +  1 ) } ph  <->  [. ( k  +  1 )  /  x ]. ph ) )
6664, 65syl 14 . . . . . . 7  |-  ( ( k  e.  ( ZZ>= `  M )  /\  A. x  e.  ( M ... k ) ph )  ->  ( A. x  e. 
{ ( k  +  1 ) } ph  <->  [. ( k  +  1 )  /  x ]. ph ) )
6762, 66mpbird 167 . . . . . 6  |-  ( ( k  e.  ( ZZ>= `  M )  /\  A. x  e.  ( M ... k ) ph )  ->  A. x  e.  {
( k  +  1 ) } ph )
68 ralun 3363 . . . . . 6  |-  ( ( A. x  e.  ( M ... k )
ph  /\  A. x  e.  { ( k  +  1 ) } ph )  ->  A. x  e.  ( ( M ... k
)  u.  { ( k  +  1 ) } ) ph )
6938, 67, 68syl2anc 411 . . . . 5  |-  ( ( k  e.  ( ZZ>= `  M )  /\  A. x  e.  ( M ... k ) ph )  ->  A. x  e.  ( ( M ... k
)  u.  { ( k  +  1 ) } ) ph )
70 fzsuc 10226 . . . . . . 7  |-  ( k  e.  ( ZZ>= `  M
)  ->  ( M ... ( k  +  1 ) )  =  ( ( M ... k
)  u.  { ( k  +  1 ) } ) )
7170raleqdv 2711 . . . . . 6  |-  ( k  e.  ( ZZ>= `  M
)  ->  ( A. x  e.  ( M ... ( k  +  1 ) ) ph  <->  A. x  e.  ( ( M ... k )  u.  {
( k  +  1 ) } ) ph ) )
7271adantr 276 . . . . 5  |-  ( ( k  e.  ( ZZ>= `  M )  /\  A. x  e.  ( M ... k ) ph )  ->  ( A. x  e.  ( M ... (
k  +  1 ) ) ph  <->  A. x  e.  ( ( M ... k )  u.  {
( k  +  1 ) } ) ph ) )
7369, 72mpbird 167 . . . 4  |-  ( ( k  e.  ( ZZ>= `  M )  /\  A. x  e.  ( M ... k ) ph )  ->  A. x  e.  ( M ... ( k  +  1 ) )
ph )
7473ex 115 . . 3  |-  ( k  e.  ( ZZ>= `  M
)  ->  ( A. x  e.  ( M ... k ) ph  ->  A. x  e.  ( M ... ( k  +  1 ) ) ph ) )
753, 5, 7, 9, 37, 74uzind4 9744 . 2  |-  ( N  e.  ( ZZ>= `  M
)  ->  A. x  e.  ( M ... N
) ph )
76 eluzfz2 10189 . 2  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  ( M ... N ) )
771, 75, 76rspcdva 2889 1  |-  ( N  e.  ( ZZ>= `  M
)  ->  ch )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2178   A.wral 2486   [.wsbc 3005    u. cun 3172   (/)c0 3468   {csn 3643   class class class wbr 4059   ` cfv 5290  (class class class)co 5967   1c1 7961    + caddc 7963    < clt 8142    - cmin 8278   ZZcz 9407   ZZ>=cuz 9683   ...cfz 10165
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-addcom 8060  ax-addass 8062  ax-distr 8064  ax-i2m1 8065  ax-0lt1 8066  ax-0id 8068  ax-rnegex 8069  ax-cnre 8071  ax-pre-ltirr 8072  ax-pre-ltwlin 8073  ax-pre-lttrn 8074  ax-pre-apti 8075  ax-pre-ltadd 8076
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rab 2495  df-v 2778  df-sbc 3006  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-sub 8280  df-neg 8281  df-inn 9072  df-n0 9331  df-z 9408  df-uz 9684  df-fz 10166
This theorem is referenced by:  nnsinds  10627  nn0sinds  10628
  Copyright terms: Public domain W3C validator