ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ralsns GIF version

Theorem ralsns 3565
Description: Substitution expressed in terms of quantification over a singleton. (Contributed by Mario Carneiro, 23-Apr-2015.)
Assertion
Ref Expression
ralsns (𝐴𝑉 → (∀𝑥 ∈ {𝐴}𝜑[𝐴 / 𝑥]𝜑))
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝑉(𝑥)

Proof of Theorem ralsns
StepHypRef Expression
1 sbc6g 2934 . 2 (𝐴𝑉 → ([𝐴 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝐴𝜑)))
2 df-ral 2422 . . 3 (∀𝑥 ∈ {𝐴}𝜑 ↔ ∀𝑥(𝑥 ∈ {𝐴} → 𝜑))
3 velsn 3545 . . . . 5 (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴)
43imbi1i 237 . . . 4 ((𝑥 ∈ {𝐴} → 𝜑) ↔ (𝑥 = 𝐴𝜑))
54albii 1447 . . 3 (∀𝑥(𝑥 ∈ {𝐴} → 𝜑) ↔ ∀𝑥(𝑥 = 𝐴𝜑))
62, 5bitri 183 . 2 (∀𝑥 ∈ {𝐴}𝜑 ↔ ∀𝑥(𝑥 = 𝐴𝜑))
71, 6syl6rbbr 198 1 (𝐴𝑉 → (∀𝑥 ∈ {𝐴}𝜑[𝐴 / 𝑥]𝜑))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104  wal 1330   = wceq 1332  wcel 1481  wral 2417  [wsbc 2910  {csn 3528
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122
This theorem depends on definitions:  df-bi 116  df-tru 1335  df-nf 1438  df-sb 1737  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ral 2422  df-v 2689  df-sbc 2911  df-sn 3534
This theorem is referenced by:  ralsng  3567  sbcsng  3586  rabrsndc  3595  omsinds  4539  ssfirab  6826  uzsinds  10242
  Copyright terms: Public domain W3C validator