ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ralima Unicode version

Theorem ralima 5721
Description: Universal quantification under an image in terms of the base set. (Contributed by Stefan O'Rear, 21-Jan-2015.)
Hypothesis
Ref Expression
rexima.x  |-  ( x  =  ( F `  y )  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
ralima  |-  ( ( F  Fn  A  /\  B  C_  A )  -> 
( A. x  e.  ( F " B
) ph  <->  A. y  e.  B  ps ) )
Distinct variable groups:    ph, y    ps, x    x, F, y    x, B, y    x, A, y
Allowed substitution hints:    ph( x)    ps( y)

Proof of Theorem ralima
StepHypRef Expression
1 ssel2 3135 . . . 4  |-  ( ( B  C_  A  /\  y  e.  B )  ->  y  e.  A )
2 funfvex 5500 . . . . 5  |-  ( ( Fun  F  /\  y  e.  dom  F )  -> 
( F `  y
)  e.  _V )
32funfni 5285 . . . 4  |-  ( ( F  Fn  A  /\  y  e.  A )  ->  ( F `  y
)  e.  _V )
41, 3sylan2 284 . . 3  |-  ( ( F  Fn  A  /\  ( B  C_  A  /\  y  e.  B )
)  ->  ( F `  y )  e.  _V )
54anassrs 398 . 2  |-  ( ( ( F  Fn  A  /\  B  C_  A )  /\  y  e.  B
)  ->  ( F `  y )  e.  _V )
6 fvelimab 5539 . . 3  |-  ( ( F  Fn  A  /\  B  C_  A )  -> 
( x  e.  ( F " B )  <->  E. y  e.  B  ( F `  y )  =  x ) )
7 eqcom 2166 . . . 4  |-  ( ( F `  y )  =  x  <->  x  =  ( F `  y ) )
87rexbii 2471 . . 3  |-  ( E. y  e.  B  ( F `  y )  =  x  <->  E. y  e.  B  x  =  ( F `  y ) )
96, 8bitrdi 195 . 2  |-  ( ( F  Fn  A  /\  B  C_  A )  -> 
( x  e.  ( F " B )  <->  E. y  e.  B  x  =  ( F `  y ) ) )
10 rexima.x . . 3  |-  ( x  =  ( F `  y )  ->  ( ph 
<->  ps ) )
1110adantl 275 . 2  |-  ( ( ( F  Fn  A  /\  B  C_  A )  /\  x  =  ( F `  y ) )  ->  ( ph  <->  ps ) )
125, 9, 11ralxfr2d 4439 1  |-  ( ( F  Fn  A  /\  B  C_  A )  -> 
( A. x  e.  ( F " B
) ph  <->  A. y  e.  B  ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1342    e. wcel 2135   A.wral 2442   E.wrex 2443   _Vcvv 2724    C_ wss 3114   "cima 4604    Fn wfn 5180   ` cfv 5185
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-14 2138  ax-ext 2146  ax-sep 4097  ax-pow 4150  ax-pr 4184
This theorem depends on definitions:  df-bi 116  df-3an 969  df-tru 1345  df-nf 1448  df-sb 1750  df-eu 2016  df-mo 2017  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ral 2447  df-rex 2448  df-v 2726  df-sbc 2950  df-un 3118  df-in 3120  df-ss 3127  df-pw 3558  df-sn 3579  df-pr 3580  df-op 3582  df-uni 3787  df-br 3980  df-opab 4041  df-id 4268  df-xp 4607  df-rel 4608  df-cnv 4609  df-co 4610  df-dm 4611  df-rn 4612  df-res 4613  df-ima 4614  df-iota 5150  df-fun 5187  df-fn 5188  df-fv 5193
This theorem is referenced by:  supisolem  6967  qtopbasss  13119
  Copyright terms: Public domain W3C validator