ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ralrn Unicode version

Theorem ralrn 5437
Description: Restricted universal quantification over the range of a function. (Contributed by Mario Carneiro, 24-Dec-2013.) (Revised by Mario Carneiro, 20-Aug-2014.)
Hypothesis
Ref Expression
rexrn.1  |-  ( x  =  ( F `  y )  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
ralrn  |-  ( F  Fn  A  ->  ( A. x  e.  ran  F
ph 
<-> 
A. y  e.  A  ps ) )
Distinct variable groups:    x, y, A   
x, F, y    ps, x    ph, y
Allowed substitution hints:    ph( x)    ps( y)

Proof of Theorem ralrn
StepHypRef Expression
1 funfvex 5322 . . 3  |-  ( ( Fun  F  /\  y  e.  dom  F )  -> 
( F `  y
)  e.  _V )
21funfni 5114 . 2  |-  ( ( F  Fn  A  /\  y  e.  A )  ->  ( F `  y
)  e.  _V )
3 fvelrnb 5352 . . 3  |-  ( F  Fn  A  ->  (
x  e.  ran  F  <->  E. y  e.  A  ( F `  y )  =  x ) )
4 eqcom 2090 . . . 4  |-  ( ( F `  y )  =  x  <->  x  =  ( F `  y ) )
54rexbii 2385 . . 3  |-  ( E. y  e.  A  ( F `  y )  =  x  <->  E. y  e.  A  x  =  ( F `  y ) )
63, 5syl6bb 194 . 2  |-  ( F  Fn  A  ->  (
x  e.  ran  F  <->  E. y  e.  A  x  =  ( F `  y ) ) )
7 rexrn.1 . . 3  |-  ( x  =  ( F `  y )  ->  ( ph 
<->  ps ) )
87adantl 271 . 2  |-  ( ( F  Fn  A  /\  x  =  ( F `  y ) )  -> 
( ph  <->  ps ) )
92, 6, 8ralxfr2d 4286 1  |-  ( F  Fn  A  ->  ( A. x  e.  ran  F
ph 
<-> 
A. y  e.  A  ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 103    = wceq 1289    e. wcel 1438   A.wral 2359   E.wrex 2360   _Vcvv 2619   ran crn 4439    Fn wfn 5010   ` cfv 5015
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-sep 3957  ax-pow 4009  ax-pr 4036
This theorem depends on definitions:  df-bi 115  df-3an 926  df-tru 1292  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ral 2364  df-rex 2365  df-v 2621  df-sbc 2841  df-un 3003  df-in 3005  df-ss 3012  df-pw 3431  df-sn 3452  df-pr 3453  df-op 3455  df-uni 3654  df-br 3846  df-opab 3900  df-mpt 3901  df-id 4120  df-xp 4444  df-rel 4445  df-cnv 4446  df-co 4447  df-dm 4448  df-rn 4449  df-iota 4980  df-fun 5017  df-fn 5018  df-fv 5023
This theorem is referenced by:  ralrnmpt  5441  cbvfo  5564  isoselem  5599  nninfall  11855
  Copyright terms: Public domain W3C validator