ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ralrn Unicode version

Theorem ralrn 5655
Description: Restricted universal quantification over the range of a function. (Contributed by Mario Carneiro, 24-Dec-2013.) (Revised by Mario Carneiro, 20-Aug-2014.)
Hypothesis
Ref Expression
rexrn.1  |-  ( x  =  ( F `  y )  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
ralrn  |-  ( F  Fn  A  ->  ( A. x  e.  ran  F
ph 
<-> 
A. y  e.  A  ps ) )
Distinct variable groups:    x, y, A   
x, F, y    ps, x    ph, y
Allowed substitution hints:    ph( x)    ps( y)

Proof of Theorem ralrn
StepHypRef Expression
1 funfvex 5533 . . 3  |-  ( ( Fun  F  /\  y  e.  dom  F )  -> 
( F `  y
)  e.  _V )
21funfni 5317 . 2  |-  ( ( F  Fn  A  /\  y  e.  A )  ->  ( F `  y
)  e.  _V )
3 fvelrnb 5564 . . 3  |-  ( F  Fn  A  ->  (
x  e.  ran  F  <->  E. y  e.  A  ( F `  y )  =  x ) )
4 eqcom 2179 . . . 4  |-  ( ( F `  y )  =  x  <->  x  =  ( F `  y ) )
54rexbii 2484 . . 3  |-  ( E. y  e.  A  ( F `  y )  =  x  <->  E. y  e.  A  x  =  ( F `  y ) )
63, 5bitrdi 196 . 2  |-  ( F  Fn  A  ->  (
x  e.  ran  F  <->  E. y  e.  A  x  =  ( F `  y ) ) )
7 rexrn.1 . . 3  |-  ( x  =  ( F `  y )  ->  ( ph 
<->  ps ) )
87adantl 277 . 2  |-  ( ( F  Fn  A  /\  x  =  ( F `  y ) )  -> 
( ph  <->  ps ) )
92, 6, 8ralxfr2d 4465 1  |-  ( F  Fn  A  ->  ( A. x  e.  ran  F
ph 
<-> 
A. y  e.  A  ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1353    e. wcel 2148   A.wral 2455   E.wrex 2456   _Vcvv 2738   ran crn 4628    Fn wfn 5212   ` cfv 5217
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4122  ax-pow 4175  ax-pr 4210
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2740  df-sbc 2964  df-un 3134  df-in 3136  df-ss 3143  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-br 4005  df-opab 4066  df-mpt 4067  df-id 4294  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-rn 4638  df-iota 5179  df-fun 5219  df-fn 5220  df-fv 5225
This theorem is referenced by:  ralrnmpt  5659  cbvfo  5786  isoselem  5821  difinfsn  7099  imasaddfnlemg  12735  nninfall  14761
  Copyright terms: Public domain W3C validator