ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xmetf Unicode version

Theorem xmetf 13401
Description: Mapping of the distance function of an extended metric. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xmetf  |-  ( D  e.  ( *Met `  X )  ->  D : ( X  X.  X ) --> RR* )

Proof of Theorem xmetf
Dummy variables  x  y  z  e  d are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mptrel 4748 . . . . . 6  |-  Rel  (
e  e.  _V  |->  { d  e.  ( RR*  ^m  ( e  X.  e
) )  |  A. x  e.  e  A. y  e.  e  (
( ( x d y )  =  0  <-> 
x  =  y )  /\  A. z  e.  e  ( x d y )  <_  (
( z d x ) +e ( z d y ) ) ) } )
2 df-xmet 13039 . . . . . . 7  |-  *Met  =  ( e  e. 
_V  |->  { d  e.  ( RR*  ^m  (
e  X.  e ) )  |  A. x  e.  e  A. y  e.  e  ( (
( x d y )  =  0  <->  x  =  y )  /\  A. z  e.  e  ( x d y )  <_  ( ( z d x ) +e ( z d y ) ) ) } )
32releqi 4703 . . . . . 6  |-  ( Rel 
*Met  <->  Rel  ( e  e.  _V  |->  { d  e.  ( RR*  ^m  (
e  X.  e ) )  |  A. x  e.  e  A. y  e.  e  ( (
( x d y )  =  0  <->  x  =  y )  /\  A. z  e.  e  ( x d y )  <_  ( ( z d x ) +e ( z d y ) ) ) } ) )
41, 3mpbir 146 . . . . 5  |-  Rel  *Met
5 relelfvdm 5539 . . . . 5  |-  ( ( Rel  *Met  /\  D  e.  ( *Met `  X ) )  ->  X  e.  dom  *Met )
64, 5mpan 424 . . . 4  |-  ( D  e.  ( *Met `  X )  ->  X  e.  dom  *Met )
7 isxmet 13396 . . . 4  |-  ( X  e.  dom  *Met  ->  ( D  e.  ( *Met `  X
)  <->  ( D :
( X  X.  X
) --> RR*  /\  A. x  e.  X  A. y  e.  X  ( (
( x D y )  =  0  <->  x  =  y )  /\  A. z  e.  X  ( x D y )  <_  ( ( z D x ) +e ( z D y ) ) ) ) ) )
86, 7syl 14 . . 3  |-  ( D  e.  ( *Met `  X )  ->  ( D  e.  ( *Met `  X )  <->  ( D : ( X  X.  X ) --> RR*  /\  A. x  e.  X  A. y  e.  X  (
( ( x D y )  =  0  <-> 
x  =  y )  /\  A. z  e.  X  ( x D y )  <_  (
( z D x ) +e ( z D y ) ) ) ) ) )
98ibi 176 . 2  |-  ( D  e.  ( *Met `  X )  ->  ( D : ( X  X.  X ) --> RR*  /\  A. x  e.  X  A. y  e.  X  (
( ( x D y )  =  0  <-> 
x  =  y )  /\  A. z  e.  X  ( x D y )  <_  (
( z D x ) +e ( z D y ) ) ) ) )
109simpld 112 1  |-  ( D  e.  ( *Met `  X )  ->  D : ( X  X.  X ) --> RR* )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1353    e. wcel 2146   A.wral 2453   {crab 2457   _Vcvv 2735   class class class wbr 3998    |-> cmpt 4059    X. cxp 4618   dom cdm 4620   Rel wrel 4625   -->wf 5204   ` cfv 5208  (class class class)co 5865    ^m cmap 6638   0cc0 7786   RR*cxr 7965    <_ cle 7967   +ecxad 9739   *Metcxmet 13031
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-13 2148  ax-14 2149  ax-ext 2157  ax-sep 4116  ax-pow 4169  ax-pr 4203  ax-un 4427  ax-setind 4530  ax-cnex 7877  ax-resscn 7878
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ne 2346  df-ral 2458  df-rex 2459  df-rab 2462  df-v 2737  df-sbc 2961  df-csb 3056  df-dif 3129  df-un 3131  df-in 3133  df-ss 3140  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-iun 3884  df-br 3999  df-opab 4060  df-mpt 4061  df-id 4287  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-rn 4631  df-res 4632  df-ima 4633  df-iota 5170  df-fun 5210  df-fn 5211  df-f 5212  df-fv 5216  df-ov 5868  df-oprab 5869  df-mpo 5870  df-1st 6131  df-2nd 6132  df-map 6640  df-pnf 7968  df-mnf 7969  df-xr 7970  df-xmet 13039
This theorem is referenced by:  xmetcl  13403  xmetdmdm  13407  xmetpsmet  13420  xmettpos  13421  xmetres2  13430  xmetres  13433  xmeterval  13486  xmeter  13487  xmetresbl  13491  comet  13550  bdxmet  13552  bdbl  13554  txmetcnp  13569
  Copyright terms: Public domain W3C validator