ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xmetf Unicode version

Theorem xmetf 14586
Description: Mapping of the distance function of an extended metric. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xmetf  |-  ( D  e.  ( *Met `  X )  ->  D : ( X  X.  X ) --> RR* )

Proof of Theorem xmetf
Dummy variables  x  y  z  e  d are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mptrel 4794 . . . . . 6  |-  Rel  (
e  e.  _V  |->  { d  e.  ( RR*  ^m  ( e  X.  e
) )  |  A. x  e.  e  A. y  e.  e  (
( ( x d y )  =  0  <-> 
x  =  y )  /\  A. z  e.  e  ( x d y )  <_  (
( z d x ) +e ( z d y ) ) ) } )
2 df-xmet 14100 . . . . . . 7  |-  *Met  =  ( e  e. 
_V  |->  { d  e.  ( RR*  ^m  (
e  X.  e ) )  |  A. x  e.  e  A. y  e.  e  ( (
( x d y )  =  0  <->  x  =  y )  /\  A. z  e.  e  ( x d y )  <_  ( ( z d x ) +e ( z d y ) ) ) } )
32releqi 4746 . . . . . 6  |-  ( Rel 
*Met  <->  Rel  ( e  e.  _V  |->  { d  e.  ( RR*  ^m  (
e  X.  e ) )  |  A. x  e.  e  A. y  e.  e  ( (
( x d y )  =  0  <->  x  =  y )  /\  A. z  e.  e  ( x d y )  <_  ( ( z d x ) +e ( z d y ) ) ) } ) )
41, 3mpbir 146 . . . . 5  |-  Rel  *Met
5 relelfvdm 5590 . . . . 5  |-  ( ( Rel  *Met  /\  D  e.  ( *Met `  X ) )  ->  X  e.  dom  *Met )
64, 5mpan 424 . . . 4  |-  ( D  e.  ( *Met `  X )  ->  X  e.  dom  *Met )
7 isxmet 14581 . . . 4  |-  ( X  e.  dom  *Met  ->  ( D  e.  ( *Met `  X
)  <->  ( D :
( X  X.  X
) --> RR*  /\  A. x  e.  X  A. y  e.  X  ( (
( x D y )  =  0  <->  x  =  y )  /\  A. z  e.  X  ( x D y )  <_  ( ( z D x ) +e ( z D y ) ) ) ) ) )
86, 7syl 14 . . 3  |-  ( D  e.  ( *Met `  X )  ->  ( D  e.  ( *Met `  X )  <->  ( D : ( X  X.  X ) --> RR*  /\  A. x  e.  X  A. y  e.  X  (
( ( x D y )  =  0  <-> 
x  =  y )  /\  A. z  e.  X  ( x D y )  <_  (
( z D x ) +e ( z D y ) ) ) ) ) )
98ibi 176 . 2  |-  ( D  e.  ( *Met `  X )  ->  ( D : ( X  X.  X ) --> RR*  /\  A. x  e.  X  A. y  e.  X  (
( ( x D y )  =  0  <-> 
x  =  y )  /\  A. z  e.  X  ( x D y )  <_  (
( z D x ) +e ( z D y ) ) ) ) )
109simpld 112 1  |-  ( D  e.  ( *Met `  X )  ->  D : ( X  X.  X ) --> RR* )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2167   A.wral 2475   {crab 2479   _Vcvv 2763   class class class wbr 4033    |-> cmpt 4094    X. cxp 4661   dom cdm 4663   Rel wrel 4668   -->wf 5254   ` cfv 5258  (class class class)co 5922    ^m cmap 6707   0cc0 7879   RR*cxr 8060    <_ cle 8062   +ecxad 9845   *Metcxmet 14092
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-fv 5266  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-map 6709  df-pnf 8063  df-mnf 8064  df-xr 8065  df-xmet 14100
This theorem is referenced by:  xmetcl  14588  xmetdmdm  14592  xmetpsmet  14605  xmettpos  14606  xmetres2  14615  xmetres  14618  xmeterval  14671  xmeter  14672  xmetresbl  14676  comet  14735  bdxmet  14737  bdbl  14739  txmetcnp  14754
  Copyright terms: Public domain W3C validator