ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  metrel Unicode version

Theorem metrel 14889
Description: The class of metrics is a relation. (Contributed by Jim Kingdon, 20-Apr-2023.)
Assertion
Ref Expression
metrel  |-  Rel  Met

Proof of Theorem metrel
Dummy variables  e  d  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mptrel 4814 . 2  |-  Rel  (
e  e.  _V  |->  { d  e.  ( RR 
^m  ( e  X.  e ) )  | 
A. x  e.  e 
A. y  e.  e  ( ( ( x d y )  =  0  <->  x  =  y
)  /\  A. z  e.  e  ( x
d y )  <_ 
( ( z d x )  +  ( z d y ) ) ) } )
2 df-met 14382 . . 3  |-  Met  =  ( e  e.  _V  |->  { d  e.  ( RR  ^m  ( e  X.  e ) )  |  A. x  e.  e  A. y  e.  e  ( ( ( x d y )  =  0  <->  x  =  y )  /\  A. z  e.  e  (
x d y )  <_  ( ( z d x )  +  ( z d y ) ) ) } )
32releqi 4766 . 2  |-  ( Rel 
Met 
<->  Rel  ( e  e. 
_V  |->  { d  e.  ( RR  ^m  (
e  X.  e ) )  |  A. x  e.  e  A. y  e.  e  ( (
( x d y )  =  0  <->  x  =  y )  /\  A. z  e.  e  ( x d y )  <_  ( ( z d x )  +  ( z d y ) ) ) } ) )
41, 3mpbir 146 1  |-  Rel  Met
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    = wceq 1373   A.wral 2485   {crab 2489   _Vcvv 2773   class class class wbr 4051    |-> cmpt 4113    X. cxp 4681   Rel wrel 4688  (class class class)co 5957    ^m cmap 6748   RRcr 7944   0cc0 7945    + caddc 7948    <_ cle 8128   Metcmet 14374
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2180  ax-ext 2188  ax-sep 4170  ax-pow 4226  ax-pr 4261
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-opab 4114  df-mpt 4115  df-xp 4689  df-rel 4690  df-met 14382
This theorem is referenced by:  metflem  14896  ismet2  14901
  Copyright terms: Public domain W3C validator