ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  metrel Unicode version

Theorem metrel 14510
Description: The class of metrics is a relation. (Contributed by Jim Kingdon, 20-Apr-2023.)
Assertion
Ref Expression
metrel  |-  Rel  Met

Proof of Theorem metrel
Dummy variables  e  d  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mptrel 4790 . 2  |-  Rel  (
e  e.  _V  |->  { d  e.  ( RR 
^m  ( e  X.  e ) )  | 
A. x  e.  e 
A. y  e.  e  ( ( ( x d y )  =  0  <->  x  =  y
)  /\  A. z  e.  e  ( x
d y )  <_ 
( ( z d x )  +  ( z d y ) ) ) } )
2 df-met 14041 . . 3  |-  Met  =  ( e  e.  _V  |->  { d  e.  ( RR  ^m  ( e  X.  e ) )  |  A. x  e.  e  A. y  e.  e  ( ( ( x d y )  =  0  <->  x  =  y )  /\  A. z  e.  e  (
x d y )  <_  ( ( z d x )  +  ( z d y ) ) ) } )
32releqi 4742 . 2  |-  ( Rel 
Met 
<->  Rel  ( e  e. 
_V  |->  { d  e.  ( RR  ^m  (
e  X.  e ) )  |  A. x  e.  e  A. y  e.  e  ( (
( x d y )  =  0  <->  x  =  y )  /\  A. z  e.  e  ( x d y )  <_  ( ( z d x )  +  ( z d y ) ) ) } ) )
41, 3mpbir 146 1  |-  Rel  Met
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    = wceq 1364   A.wral 2472   {crab 2476   _Vcvv 2760   class class class wbr 4029    |-> cmpt 4090    X. cxp 4657   Rel wrel 4664  (class class class)co 5918    ^m cmap 6702   RRcr 7871   0cc0 7872    + caddc 7875    <_ cle 8055   Metcmet 14033
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-opab 4091  df-mpt 4092  df-xp 4665  df-rel 4666  df-met 14041
This theorem is referenced by:  metflem  14517  ismet2  14522
  Copyright terms: Public domain W3C validator