ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mopnrel Unicode version

Theorem mopnrel 14998
Description: The class of open sets of a metric space is a relation. (Contributed by Jim Kingdon, 5-May-2023.)
Assertion
Ref Expression
mopnrel  |-  Rel  MetOpen

Proof of Theorem mopnrel
Dummy variable  d is distinct from all other variables.
StepHypRef Expression
1 mptrel 4819 . 2  |-  Rel  (
d  e.  U. ran  *Met  |->  ( topGen `  ran  ( ball `  d )
) )
2 df-mopn 14394 . . 3  |-  MetOpen  =  ( d  e.  U. ran  *Met  |->  ( topGen `  ran  ( ball `  d )
) )
32releqi 4771 . 2  |-  ( Rel  MetOpen  <->  Rel  ( d  e.  U. ran  *Met  |->  ( topGen ` 
ran  ( ball `  d
) ) ) )
41, 3mpbir 146 1  |-  Rel  MetOpen
Colors of variables: wff set class
Syntax hints:   U.cuni 3859    |-> cmpt 4116   ran crn 4689   Rel wrel 4693   ` cfv 5285   topGenctg 13171   *Metcxmet 14383   ballcbl 14385   MetOpencmopn 14388
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2180  ax-ext 2188  ax-sep 4173  ax-pow 4229  ax-pr 4264
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-opab 4117  df-mpt 4118  df-xp 4694  df-rel 4695  df-mopn 14394
This theorem is referenced by:  isxms2  15009
  Copyright terms: Public domain W3C validator