ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mopnrel Unicode version

Theorem mopnrel 12424
Description: The class of open sets of a metric space is a relation. (Contributed by Jim Kingdon, 5-May-2023.)
Assertion
Ref Expression
mopnrel  |-  Rel  MetOpen

Proof of Theorem mopnrel
Dummy variable  d is distinct from all other variables.
StepHypRef Expression
1 mptrel 4625 . 2  |-  Rel  (
d  e.  U. ran  *Met  |->  ( topGen `  ran  ( ball `  d )
) )
2 df-mopn 11997 . . 3  |-  MetOpen  =  ( d  e.  U. ran  *Met  |->  ( topGen `  ran  ( ball `  d )
) )
32releqi 4580 . 2  |-  ( Rel  MetOpen  <->  Rel  ( d  e.  U. ran  *Met  |->  ( topGen ` 
ran  ( ball `  d
) ) ) )
41, 3mpbir 145 1  |-  Rel  MetOpen
Colors of variables: wff set class
Syntax hints:   U.cuni 3700    |-> cmpt 3947   ran crn 4498   Rel wrel 4502   ` cfv 5079   topGenctg 11972   *Metcxmet 11986   ballcbl 11988   MetOpencmopn 11991
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 681  ax-5 1404  ax-7 1405  ax-gen 1406  ax-ie1 1450  ax-ie2 1451  ax-8 1463  ax-10 1464  ax-11 1465  ax-i12 1466  ax-bndl 1467  ax-4 1468  ax-14 1473  ax-17 1487  ax-i9 1491  ax-ial 1495  ax-i5r 1496  ax-ext 2095  ax-sep 4004  ax-pow 4056  ax-pr 4089
This theorem depends on definitions:  df-bi 116  df-3an 945  df-tru 1315  df-nf 1418  df-sb 1717  df-clab 2100  df-cleq 2106  df-clel 2109  df-nfc 2242  df-ral 2393  df-rex 2394  df-v 2657  df-un 3039  df-in 3041  df-ss 3048  df-pw 3476  df-sn 3497  df-pr 3498  df-op 3500  df-opab 3948  df-mpt 3949  df-xp 4503  df-rel 4504  df-mopn 11997
This theorem is referenced by:  isxms2  12435
  Copyright terms: Public domain W3C validator