ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mopnrel Unicode version

Theorem mopnrel 14609
Description: The class of open sets of a metric space is a relation. (Contributed by Jim Kingdon, 5-May-2023.)
Assertion
Ref Expression
mopnrel  |-  Rel  MetOpen

Proof of Theorem mopnrel
Dummy variable  d is distinct from all other variables.
StepHypRef Expression
1 mptrel 4790 . 2  |-  Rel  (
d  e.  U. ran  *Met  |->  ( topGen `  ran  ( ball `  d )
) )
2 df-mopn 14043 . . 3  |-  MetOpen  =  ( d  e.  U. ran  *Met  |->  ( topGen `  ran  ( ball `  d )
) )
32releqi 4742 . 2  |-  ( Rel  MetOpen  <->  Rel  ( d  e.  U. ran  *Met  |->  ( topGen ` 
ran  ( ball `  d
) ) ) )
41, 3mpbir 146 1  |-  Rel  MetOpen
Colors of variables: wff set class
Syntax hints:   U.cuni 3835    |-> cmpt 4090   ran crn 4660   Rel wrel 4664   ` cfv 5254   topGenctg 12865   *Metcxmet 14032   ballcbl 14034   MetOpencmopn 14037
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-opab 4091  df-mpt 4092  df-xp 4665  df-rel 4666  df-mopn 14043
This theorem is referenced by:  isxms2  14620
  Copyright terms: Public domain W3C validator