ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mopnrel Unicode version

Theorem mopnrel 13081
Description: The class of open sets of a metric space is a relation. (Contributed by Jim Kingdon, 5-May-2023.)
Assertion
Ref Expression
mopnrel  |-  Rel  MetOpen

Proof of Theorem mopnrel
Dummy variable  d is distinct from all other variables.
StepHypRef Expression
1 mptrel 4732 . 2  |-  Rel  (
d  e.  U. ran  *Met  |->  ( topGen `  ran  ( ball `  d )
) )
2 df-mopn 12631 . . 3  |-  MetOpen  =  ( d  e.  U. ran  *Met  |->  ( topGen `  ran  ( ball `  d )
) )
32releqi 4687 . 2  |-  ( Rel  MetOpen  <->  Rel  ( d  e.  U. ran  *Met  |->  ( topGen ` 
ran  ( ball `  d
) ) ) )
41, 3mpbir 145 1  |-  Rel  MetOpen
Colors of variables: wff set class
Syntax hints:   U.cuni 3789    |-> cmpt 4043   ran crn 4605   Rel wrel 4609   ` cfv 5188   topGenctg 12571   *Metcxmet 12620   ballcbl 12622   MetOpencmopn 12625
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-opab 4044  df-mpt 4045  df-xp 4610  df-rel 4611  df-mopn 12631
This theorem is referenced by:  isxms2  13092
  Copyright terms: Public domain W3C validator