ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reldmmpo Unicode version

Theorem reldmmpo 5962
Description: The domain of an operation defined by maps-to notation is a relation. (Contributed by Stefan O'Rear, 27-Nov-2014.)
Hypothesis
Ref Expression
rngop.1  |-  F  =  ( x  e.  A ,  y  e.  B  |->  C )
Assertion
Ref Expression
reldmmpo  |-  Rel  dom  F
Distinct variable groups:    y, A    x, y
Allowed substitution hints:    A( x)    B( x, y)    C( x, y)    F( x, y)

Proof of Theorem reldmmpo
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 reldmoprab 5936 . 2  |-  Rel  dom  {
<. <. x ,  y
>. ,  z >.  |  ( ( x  e.  A  /\  y  e.  B )  /\  z  =  C ) }
2 rngop.1 . . . . 5  |-  F  =  ( x  e.  A ,  y  e.  B  |->  C )
3 df-mpo 5856 . . . . 5  |-  ( x  e.  A ,  y  e.  B  |->  C )  =  { <. <. x ,  y >. ,  z
>.  |  ( (
x  e.  A  /\  y  e.  B )  /\  z  =  C
) }
42, 3eqtri 2191 . . . 4  |-  F  =  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  A  /\  y  e.  B )  /\  z  =  C ) }
54dmeqi 4810 . . 3  |-  dom  F  =  dom  { <. <. x ,  y >. ,  z
>.  |  ( (
x  e.  A  /\  y  e.  B )  /\  z  =  C
) }
65releqi 4692 . 2  |-  ( Rel 
dom  F  <->  Rel  dom  { <. <. x ,  y >. ,  z
>.  |  ( (
x  e.  A  /\  y  e.  B )  /\  z  =  C
) } )
71, 6mpbir 145 1  |-  Rel  dom  F
Colors of variables: wff set class
Syntax hints:    /\ wa 103    = wceq 1348    e. wcel 2141   dom cdm 4609   Rel wrel 4614   {coprab 5852    e. cmpo 5853
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4105  ax-pow 4158  ax-pr 4192
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-un 3125  df-in 3127  df-ss 3134  df-pw 3566  df-sn 3587  df-pr 3588  df-op 3590  df-br 3988  df-opab 4049  df-xp 4615  df-rel 4616  df-dm 4619  df-oprab 5855  df-mpo 5856
This theorem is referenced by:  reldmmap  6632  reldmsets  12434  reldmress  12465  reldmprds  12594
  Copyright terms: Public domain W3C validator