ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  psmetrel Unicode version

Theorem psmetrel 12962
Description: The class of pseudometrics is a relation. (Contributed by Jim Kingdon, 24-Apr-2023.)
Assertion
Ref Expression
psmetrel  |-  Rel PsMet

Proof of Theorem psmetrel
Dummy variables  w  d  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mptrel 4732 . 2  |-  Rel  (
x  e.  _V  |->  { d  e.  ( RR*  ^m  ( x  X.  x
) )  |  A. y  e.  x  (
( y d y )  =  0  /\ 
A. z  e.  x  A. w  e.  x  ( y d z )  <_  ( (
w d y ) +e ( w d z ) ) ) } )
2 df-psmet 12627 . . 3  |- PsMet  =  ( x  e.  _V  |->  { d  e.  ( RR*  ^m  ( x  X.  x
) )  |  A. y  e.  x  (
( y d y )  =  0  /\ 
A. z  e.  x  A. w  e.  x  ( y d z )  <_  ( (
w d y ) +e ( w d z ) ) ) } )
32releqi 4687 . 2  |-  ( Rel PsMet  <->  Rel  ( x  e.  _V  |->  { d  e.  (
RR*  ^m  ( x  X.  x ) )  | 
A. y  e.  x  ( ( y d y )  =  0  /\  A. z  e.  x  A. w  e.  x  ( y d z )  <_  (
( w d y ) +e ( w d z ) ) ) } ) )
41, 3mpbir 145 1  |-  Rel PsMet
Colors of variables: wff set class
Syntax hints:    /\ wa 103    = wceq 1343   A.wral 2444   {crab 2448   _Vcvv 2726   class class class wbr 3982    |-> cmpt 4043    X. cxp 4602   Rel wrel 4609  (class class class)co 5842    ^m cmap 6614   0cc0 7753   RR*cxr 7932    <_ cle 7934   +ecxad 9706  PsMetcpsmet 12619
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-opab 4044  df-mpt 4045  df-xp 4610  df-rel 4611  df-psmet 12627
This theorem is referenced by:  blfvalps  13025  blvalps  13028  blfps  13049
  Copyright terms: Public domain W3C validator