ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  psmetrel Unicode version

Theorem psmetrel 13962
Description: The class of pseudometrics is a relation. (Contributed by Jim Kingdon, 24-Apr-2023.)
Assertion
Ref Expression
psmetrel  |-  Rel PsMet

Proof of Theorem psmetrel
Dummy variables  w  d  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mptrel 4757 . 2  |-  Rel  (
x  e.  _V  |->  { d  e.  ( RR*  ^m  ( x  X.  x
) )  |  A. y  e.  x  (
( y d y )  =  0  /\ 
A. z  e.  x  A. w  e.  x  ( y d z )  <_  ( (
w d y ) +e ( w d z ) ) ) } )
2 df-psmet 13587 . . 3  |- PsMet  =  ( x  e.  _V  |->  { d  e.  ( RR*  ^m  ( x  X.  x
) )  |  A. y  e.  x  (
( y d y )  =  0  /\ 
A. z  e.  x  A. w  e.  x  ( y d z )  <_  ( (
w d y ) +e ( w d z ) ) ) } )
32releqi 4711 . 2  |-  ( Rel PsMet  <->  Rel  ( x  e.  _V  |->  { d  e.  (
RR*  ^m  ( x  X.  x ) )  | 
A. y  e.  x  ( ( y d y )  =  0  /\  A. z  e.  x  A. w  e.  x  ( y d z )  <_  (
( w d y ) +e ( w d z ) ) ) } ) )
41, 3mpbir 146 1  |-  Rel PsMet
Colors of variables: wff set class
Syntax hints:    /\ wa 104    = wceq 1353   A.wral 2455   {crab 2459   _Vcvv 2739   class class class wbr 4005    |-> cmpt 4066    X. cxp 4626   Rel wrel 4633  (class class class)co 5878    ^m cmap 6651   0cc0 7814   RR*cxr 7994    <_ cle 7996   +ecxad 9773  PsMetcpsmet 13579
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2741  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-opab 4067  df-mpt 4068  df-xp 4634  df-rel 4635  df-psmet 13587
This theorem is referenced by:  blfvalps  14025  blvalps  14028  blfps  14049
  Copyright terms: Public domain W3C validator