ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  psmetrel Unicode version

Theorem psmetrel 14558
Description: The class of pseudometrics is a relation. (Contributed by Jim Kingdon, 24-Apr-2023.)
Assertion
Ref Expression
psmetrel  |-  Rel PsMet

Proof of Theorem psmetrel
Dummy variables  w  d  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mptrel 4794 . 2  |-  Rel  (
x  e.  _V  |->  { d  e.  ( RR*  ^m  ( x  X.  x
) )  |  A. y  e.  x  (
( y d y )  =  0  /\ 
A. z  e.  x  A. w  e.  x  ( y d z )  <_  ( (
w d y ) +e ( w d z ) ) ) } )
2 df-psmet 14099 . . 3  |- PsMet  =  ( x  e.  _V  |->  { d  e.  ( RR*  ^m  ( x  X.  x
) )  |  A. y  e.  x  (
( y d y )  =  0  /\ 
A. z  e.  x  A. w  e.  x  ( y d z )  <_  ( (
w d y ) +e ( w d z ) ) ) } )
32releqi 4746 . 2  |-  ( Rel PsMet  <->  Rel  ( x  e.  _V  |->  { d  e.  (
RR*  ^m  ( x  X.  x ) )  | 
A. y  e.  x  ( ( y d y )  =  0  /\  A. z  e.  x  A. w  e.  x  ( y d z )  <_  (
( w d y ) +e ( w d z ) ) ) } ) )
41, 3mpbir 146 1  |-  Rel PsMet
Colors of variables: wff set class
Syntax hints:    /\ wa 104    = wceq 1364   A.wral 2475   {crab 2479   _Vcvv 2763   class class class wbr 4033    |-> cmpt 4094    X. cxp 4661   Rel wrel 4668  (class class class)co 5922    ^m cmap 6707   0cc0 7879   RR*cxr 8060    <_ cle 8062   +ecxad 9845  PsMetcpsmet 14091
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-opab 4095  df-mpt 4096  df-xp 4669  df-rel 4670  df-psmet 14099
This theorem is referenced by:  blfvalps  14621  blvalps  14624  blfps  14645
  Copyright terms: Public domain W3C validator