ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  renepnfd Unicode version

Theorem renepnfd 8077
Description: No (finite) real equals plus infinity. (Contributed by Mario Carneiro, 28-May-2016.)
Hypothesis
Ref Expression
rexrd.1  |-  ( ph  ->  A  e.  RR )
Assertion
Ref Expression
renepnfd  |-  ( ph  ->  A  =/= +oo )

Proof of Theorem renepnfd
StepHypRef Expression
1 rexrd.1 . 2  |-  ( ph  ->  A  e.  RR )
2 renepnf 8074 . 2  |-  ( A  e.  RR  ->  A  =/= +oo )
31, 2syl 14 1  |-  ( ph  ->  A  =/= +oo )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2167    =/= wne 2367   RRcr 7878   +oocpnf 8058
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-un 4468  ax-cnex 7970  ax-resscn 7971
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-rex 2481  df-rab 2484  df-v 2765  df-in 3163  df-ss 3170  df-pw 3607  df-uni 3840  df-pnf 8063
This theorem is referenced by:  xaddnepnf  9933  xqltnle  10357
  Copyright terms: Public domain W3C validator