![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > renepnfd | GIF version |
Description: No (finite) real equals plus infinity. (Contributed by Mario Carneiro, 28-May-2016.) |
Ref | Expression |
---|---|
rexrd.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
Ref | Expression |
---|---|
renepnfd | ⊢ (𝜑 → 𝐴 ≠ +∞) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexrd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
2 | renepnf 8067 | . 2 ⊢ (𝐴 ∈ ℝ → 𝐴 ≠ +∞) | |
3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → 𝐴 ≠ +∞) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2164 ≠ wne 2364 ℝcr 7871 +∞cpnf 8051 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-un 4464 ax-cnex 7963 ax-resscn 7964 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-rex 2478 df-rab 2481 df-v 2762 df-in 3159 df-ss 3166 df-pw 3603 df-uni 3836 df-pnf 8056 |
This theorem is referenced by: xaddnepnf 9924 xqltnle 10336 |
Copyright terms: Public domain | W3C validator |