ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  renepnfd GIF version

Theorem renepnfd 7949
Description: No (finite) real equals plus infinity. (Contributed by Mario Carneiro, 28-May-2016.)
Hypothesis
Ref Expression
rexrd.1 (𝜑𝐴 ∈ ℝ)
Assertion
Ref Expression
renepnfd (𝜑𝐴 ≠ +∞)

Proof of Theorem renepnfd
StepHypRef Expression
1 rexrd.1 . 2 (𝜑𝐴 ∈ ℝ)
2 renepnf 7946 . 2 (𝐴 ∈ ℝ → 𝐴 ≠ +∞)
31, 2syl 14 1 (𝜑𝐴 ≠ +∞)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2136  wne 2336  cr 7752  +∞cpnf 7930
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-un 4411  ax-cnex 7844  ax-resscn 7845
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-rex 2450  df-rab 2453  df-v 2728  df-in 3122  df-ss 3129  df-pw 3561  df-uni 3790  df-pnf 7935
This theorem is referenced by:  xaddnepnf  9794
  Copyright terms: Public domain W3C validator