ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  renemnfd Unicode version

Theorem renemnfd 8073
Description: No real equals minus infinity. (Contributed by Mario Carneiro, 28-May-2016.)
Hypothesis
Ref Expression
rexrd.1  |-  ( ph  ->  A  e.  RR )
Assertion
Ref Expression
renemnfd  |-  ( ph  ->  A  =/= -oo )

Proof of Theorem renemnfd
StepHypRef Expression
1 rexrd.1 . 2  |-  ( ph  ->  A  e.  RR )
2 renemnf 8070 . 2  |-  ( A  e.  RR  ->  A  =/= -oo )
31, 2syl 14 1  |-  ( ph  ->  A  =/= -oo )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2164    =/= wne 2364   RRcr 7873   -oocmnf 8054
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175  ax-setind 4570  ax-cnex 7965  ax-resscn 7966
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-v 2762  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-uni 3837  df-pnf 8058  df-mnf 8059
This theorem is referenced by:  xnn0nemnf  9317  xaddnemnf  9926  xposdif  9951  xleaddadd  9956  xrbdtri  11422
  Copyright terms: Public domain W3C validator