ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resiima Unicode version

Theorem resiima 5028
Description: The image of a restriction of the identity function. (Contributed by FL, 31-Dec-2006.)
Assertion
Ref Expression
resiima  |-  ( B 
C_  A  ->  (
(  _I  |`  A )
" B )  =  B )

Proof of Theorem resiima
StepHypRef Expression
1 df-ima 4677 . . 3  |-  ( (  _I  |`  A ) " B )  =  ran  ( (  _I  |`  A )  |`  B )
21a1i 9 . 2  |-  ( B 
C_  A  ->  (
(  _I  |`  A )
" B )  =  ran  ( (  _I  |`  A )  |`  B ) )
3 resabs1 4976 . . 3  |-  ( B 
C_  A  ->  (
(  _I  |`  A )  |`  B )  =  (  _I  |`  B )
)
43rneqd 4896 . 2  |-  ( B 
C_  A  ->  ran  ( (  _I  |`  A )  |`  B )  =  ran  (  _I  |`  B ) )
5 rnresi 5027 . . 3  |-  ran  (  _I  |`  B )  =  B
65a1i 9 . 2  |-  ( B 
C_  A  ->  ran  (  _I  |`  B )  =  B )
72, 4, 63eqtrd 2233 1  |-  ( B 
C_  A  ->  (
(  _I  |`  A )
" B )  =  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    C_ wss 3157    _I cid 4324   ran crn 4665    |` cres 4666   "cima 4667
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-br 4035  df-opab 4096  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677
This theorem is referenced by:  ssidcn  14530
  Copyright terms: Public domain W3C validator