ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resiima Unicode version

Theorem resiima 5040
Description: The image of a restriction of the identity function. (Contributed by FL, 31-Dec-2006.)
Assertion
Ref Expression
resiima  |-  ( B 
C_  A  ->  (
(  _I  |`  A )
" B )  =  B )

Proof of Theorem resiima
StepHypRef Expression
1 df-ima 4688 . . 3  |-  ( (  _I  |`  A ) " B )  =  ran  ( (  _I  |`  A )  |`  B )
21a1i 9 . 2  |-  ( B 
C_  A  ->  (
(  _I  |`  A )
" B )  =  ran  ( (  _I  |`  A )  |`  B ) )
3 resabs1 4988 . . 3  |-  ( B 
C_  A  ->  (
(  _I  |`  A )  |`  B )  =  (  _I  |`  B )
)
43rneqd 4907 . 2  |-  ( B 
C_  A  ->  ran  ( (  _I  |`  A )  |`  B )  =  ran  (  _I  |`  B ) )
5 rnresi 5039 . . 3  |-  ran  (  _I  |`  B )  =  B
65a1i 9 . 2  |-  ( B 
C_  A  ->  ran  (  _I  |`  B )  =  B )
72, 4, 63eqtrd 2242 1  |-  ( B 
C_  A  ->  (
(  _I  |`  A )
" B )  =  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373    C_ wss 3166    _I cid 4335   ran crn 4676    |` cres 4677   "cima 4678
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-br 4045  df-opab 4106  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688
This theorem is referenced by:  ssidcn  14682
  Copyright terms: Public domain W3C validator