ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resiima Unicode version

Theorem resiima 5086
Description: The image of a restriction of the identity function. (Contributed by FL, 31-Dec-2006.)
Assertion
Ref Expression
resiima  |-  ( B 
C_  A  ->  (
(  _I  |`  A )
" B )  =  B )

Proof of Theorem resiima
StepHypRef Expression
1 df-ima 4732 . . 3  |-  ( (  _I  |`  A ) " B )  =  ran  ( (  _I  |`  A )  |`  B )
21a1i 9 . 2  |-  ( B 
C_  A  ->  (
(  _I  |`  A )
" B )  =  ran  ( (  _I  |`  A )  |`  B ) )
3 resabs1 5034 . . 3  |-  ( B 
C_  A  ->  (
(  _I  |`  A )  |`  B )  =  (  _I  |`  B )
)
43rneqd 4953 . 2  |-  ( B 
C_  A  ->  ran  ( (  _I  |`  A )  |`  B )  =  ran  (  _I  |`  B ) )
5 rnresi 5085 . . 3  |-  ran  (  _I  |`  B )  =  B
65a1i 9 . 2  |-  ( B 
C_  A  ->  ran  (  _I  |`  B )  =  B )
72, 4, 63eqtrd 2266 1  |-  ( B 
C_  A  ->  (
(  _I  |`  A )
" B )  =  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1395    C_ wss 3197    _I cid 4379   ran crn 4720    |` cres 4721   "cima 4722
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-br 4084  df-opab 4146  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732
This theorem is referenced by:  ssidcn  14884
  Copyright terms: Public domain W3C validator