ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssidcn Unicode version

Theorem ssidcn 14389
Description: The identity function is a continuous function from one topology to another topology on the same set iff the domain is finer than the codomain. (Contributed by Mario Carneiro, 21-Mar-2015.) (Revised by Mario Carneiro, 21-Aug-2015.)
Assertion
Ref Expression
ssidcn  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  X )
)  ->  ( (  _I  |`  X )  e.  ( J  Cn  K
)  <->  K  C_  J ) )

Proof of Theorem ssidcn
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 iscn 14376 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  X )
)  ->  ( (  _I  |`  X )  e.  ( J  Cn  K
)  <->  ( (  _I  |`  X ) : X --> X  /\  A. x  e.  K  ( `' (  _I  |`  X ) " x )  e.  J ) ) )
2 f1oi 5539 . . . . 5  |-  (  _I  |`  X ) : X -1-1-onto-> X
3 f1of 5501 . . . . 5  |-  ( (  _I  |`  X ) : X -1-1-onto-> X  ->  (  _I  |`  X ) : X --> X )
42, 3ax-mp 5 . . . 4  |-  (  _I  |`  X ) : X --> X
54biantrur 303 . . 3  |-  ( A. x  e.  K  ( `' (  _I  |`  X )
" x )  e.  J  <->  ( (  _I  |`  X ) : X --> X  /\  A. x  e.  K  ( `' (  _I  |`  X ) " x )  e.  J ) )
61, 5bitr4di 198 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  X )
)  ->  ( (  _I  |`  X )  e.  ( J  Cn  K
)  <->  A. x  e.  K  ( `' (  _I  |`  X )
" x )  e.  J ) )
7 cnvresid 5329 . . . . . . 7  |-  `' (  _I  |`  X )  =  (  _I  |`  X )
87imaeq1i 5003 . . . . . 6  |-  ( `' (  _I  |`  X )
" x )  =  ( (  _I  |`  X )
" x )
9 elssuni 3864 . . . . . . . . 9  |-  ( x  e.  K  ->  x  C_ 
U. K )
109adantl 277 . . . . . . . 8  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  X )
)  /\  x  e.  K )  ->  x  C_ 
U. K )
11 toponuni 14194 . . . . . . . . 9  |-  ( K  e.  (TopOn `  X
)  ->  X  =  U. K )
1211ad2antlr 489 . . . . . . . 8  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  X )
)  /\  x  e.  K )  ->  X  =  U. K )
1310, 12sseqtrrd 3219 . . . . . . 7  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  X )
)  /\  x  e.  K )  ->  x  C_  X )
14 resiima 5024 . . . . . . 7  |-  ( x 
C_  X  ->  (
(  _I  |`  X )
" x )  =  x )
1513, 14syl 14 . . . . . 6  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  X )
)  /\  x  e.  K )  ->  (
(  _I  |`  X )
" x )  =  x )
168, 15eqtrid 2238 . . . . 5  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  X )
)  /\  x  e.  K )  ->  ( `' (  _I  |`  X )
" x )  =  x )
1716eleq1d 2262 . . . 4  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  X )
)  /\  x  e.  K )  ->  (
( `' (  _I  |`  X ) " x
)  e.  J  <->  x  e.  J ) )
1817ralbidva 2490 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  X )
)  ->  ( A. x  e.  K  ( `' (  _I  |`  X )
" x )  e.  J  <->  A. x  e.  K  x  e.  J )
)
19 dfss3 3170 . . 3  |-  ( K 
C_  J  <->  A. x  e.  K  x  e.  J )
2018, 19bitr4di 198 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  X )
)  ->  ( A. x  e.  K  ( `' (  _I  |`  X )
" x )  e.  J  <->  K  C_  J ) )
216, 20bitrd 188 1  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  X )
)  ->  ( (  _I  |`  X )  e.  ( J  Cn  K
)  <->  K  C_  J ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2164   A.wral 2472    C_ wss 3154   U.cuni 3836    _I cid 4320   `'ccnv 4659    |` cres 4662   "cima 4663   -->wf 5251   -1-1-onto->wf1o 5254   ` cfv 5255  (class class class)co 5919  TopOnctopon 14189    Cn ccn 14364
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-map 6706  df-top 14177  df-topon 14190  df-cn 14367
This theorem is referenced by:  idcn  14391
  Copyright terms: Public domain W3C validator