Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ssidcn | Unicode version |
Description: The identity function is a continuous function from one topology to another topology on the same set iff the domain is finer than the codomain. (Contributed by Mario Carneiro, 21-Mar-2015.) (Revised by Mario Carneiro, 21-Aug-2015.) |
Ref | Expression |
---|---|
ssidcn | TopOn TopOn |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iscn 13268 | . . 3 TopOn TopOn | |
2 | f1oi 5491 | . . . . 5 | |
3 | f1of 5453 | . . . . 5 | |
4 | 2, 3 | ax-mp 5 | . . . 4 |
5 | 4 | biantrur 303 | . . 3 |
6 | 1, 5 | bitr4di 198 | . 2 TopOn TopOn |
7 | cnvresid 5282 | . . . . . . 7 | |
8 | 7 | imaeq1i 4960 | . . . . . 6 |
9 | elssuni 3833 | . . . . . . . . 9 | |
10 | 9 | adantl 277 | . . . . . . . 8 TopOn TopOn |
11 | toponuni 13084 | . . . . . . . . 9 TopOn | |
12 | 11 | ad2antlr 489 | . . . . . . . 8 TopOn TopOn |
13 | 10, 12 | sseqtrrd 3192 | . . . . . . 7 TopOn TopOn |
14 | resiima 4979 | . . . . . . 7 | |
15 | 13, 14 | syl 14 | . . . . . 6 TopOn TopOn |
16 | 8, 15 | eqtrid 2220 | . . . . 5 TopOn TopOn |
17 | 16 | eleq1d 2244 | . . . 4 TopOn TopOn |
18 | 17 | ralbidva 2471 | . . 3 TopOn TopOn |
19 | dfss3 3143 | . . 3 | |
20 | 18, 19 | bitr4di 198 | . 2 TopOn TopOn |
21 | 6, 20 | bitrd 188 | 1 TopOn TopOn |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 104 wb 105 wceq 1353 wcel 2146 wral 2453 wss 3127 cuni 3805 cid 4282 ccnv 4619 cres 4622 cima 4623 wf 5204 wf1o 5207 cfv 5208 (class class class)co 5865 TopOnctopon 13079 ccn 13256 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-pow 4169 ax-pr 4203 ax-un 4427 ax-setind 4530 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ne 2346 df-ral 2458 df-rex 2459 df-rab 2462 df-v 2737 df-sbc 2961 df-csb 3056 df-dif 3129 df-un 3131 df-in 3133 df-ss 3140 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-iun 3884 df-br 3999 df-opab 4060 df-mpt 4061 df-id 4287 df-xp 4626 df-rel 4627 df-cnv 4628 df-co 4629 df-dm 4630 df-rn 4631 df-res 4632 df-ima 4633 df-iota 5170 df-fun 5210 df-fn 5211 df-f 5212 df-f1 5213 df-fo 5214 df-f1o 5215 df-fv 5216 df-ov 5868 df-oprab 5869 df-mpo 5870 df-1st 6131 df-2nd 6132 df-map 6640 df-top 13067 df-topon 13080 df-cn 13259 |
This theorem is referenced by: idcn 13283 |
Copyright terms: Public domain | W3C validator |