ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resiima GIF version

Theorem resiima 4998
Description: The image of a restriction of the identity function. (Contributed by FL, 31-Dec-2006.)
Assertion
Ref Expression
resiima (𝐵𝐴 → (( I ↾ 𝐴) “ 𝐵) = 𝐵)

Proof of Theorem resiima
StepHypRef Expression
1 df-ima 4651 . . 3 (( I ↾ 𝐴) “ 𝐵) = ran (( I ↾ 𝐴) ↾ 𝐵)
21a1i 9 . 2 (𝐵𝐴 → (( I ↾ 𝐴) “ 𝐵) = ran (( I ↾ 𝐴) ↾ 𝐵))
3 resabs1 4948 . . 3 (𝐵𝐴 → (( I ↾ 𝐴) ↾ 𝐵) = ( I ↾ 𝐵))
43rneqd 4868 . 2 (𝐵𝐴 → ran (( I ↾ 𝐴) ↾ 𝐵) = ran ( I ↾ 𝐵))
5 rnresi 4997 . . 3 ran ( I ↾ 𝐵) = 𝐵
65a1i 9 . 2 (𝐵𝐴 → ran ( I ↾ 𝐵) = 𝐵)
72, 4, 63eqtrd 2224 1 (𝐵𝐴 → (( I ↾ 𝐴) “ 𝐵) = 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1363  wss 3141   I cid 4300  ran crn 4639  cres 4640  cima 4641
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-14 2161  ax-ext 2169  ax-sep 4133  ax-pow 4186  ax-pr 4221
This theorem depends on definitions:  df-bi 117  df-3an 981  df-tru 1366  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ral 2470  df-rex 2471  df-v 2751  df-un 3145  df-in 3147  df-ss 3154  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-br 4016  df-opab 4077  df-id 4305  df-xp 4644  df-rel 4645  df-cnv 4646  df-dm 4648  df-rn 4649  df-res 4650  df-ima 4651
This theorem is referenced by:  ssidcn  13981
  Copyright terms: Public domain W3C validator