Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > resiima | GIF version |
Description: The image of a restriction of the identity function. (Contributed by FL, 31-Dec-2006.) |
Ref | Expression |
---|---|
resiima | ⊢ (𝐵 ⊆ 𝐴 → (( I ↾ 𝐴) “ 𝐵) = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ima 4601 | . . 3 ⊢ (( I ↾ 𝐴) “ 𝐵) = ran (( I ↾ 𝐴) ↾ 𝐵) | |
2 | 1 | a1i 9 | . 2 ⊢ (𝐵 ⊆ 𝐴 → (( I ↾ 𝐴) “ 𝐵) = ran (( I ↾ 𝐴) ↾ 𝐵)) |
3 | resabs1 4897 | . . 3 ⊢ (𝐵 ⊆ 𝐴 → (( I ↾ 𝐴) ↾ 𝐵) = ( I ↾ 𝐵)) | |
4 | 3 | rneqd 4817 | . 2 ⊢ (𝐵 ⊆ 𝐴 → ran (( I ↾ 𝐴) ↾ 𝐵) = ran ( I ↾ 𝐵)) |
5 | rnresi 4945 | . . 3 ⊢ ran ( I ↾ 𝐵) = 𝐵 | |
6 | 5 | a1i 9 | . 2 ⊢ (𝐵 ⊆ 𝐴 → ran ( I ↾ 𝐵) = 𝐵) |
7 | 2, 4, 6 | 3eqtrd 2194 | 1 ⊢ (𝐵 ⊆ 𝐴 → (( I ↾ 𝐴) “ 𝐵) = 𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1335 ⊆ wss 3102 I cid 4250 ran crn 4589 ↾ cres 4590 “ cima 4591 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-14 2131 ax-ext 2139 ax-sep 4084 ax-pow 4137 ax-pr 4171 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ral 2440 df-rex 2441 df-v 2714 df-un 3106 df-in 3108 df-ss 3115 df-pw 3546 df-sn 3567 df-pr 3568 df-op 3570 df-br 3968 df-opab 4028 df-id 4255 df-xp 4594 df-rel 4595 df-cnv 4596 df-dm 4598 df-rn 4599 df-res 4600 df-ima 4601 |
This theorem is referenced by: ssidcn 12680 |
Copyright terms: Public domain | W3C validator |