ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ima0 Unicode version

Theorem ima0 4989
Description: Image of the empty set. Theorem 3.16(ii) of [Monk1] p. 38. (Contributed by NM, 20-May-1998.)
Assertion
Ref Expression
ima0  |-  ( A
" (/) )  =  (/)

Proof of Theorem ima0
StepHypRef Expression
1 df-ima 4641 . 2  |-  ( A
" (/) )  =  ran  ( A  |`  (/) )
2 res0 4913 . . 3  |-  ( A  |`  (/) )  =  (/)
32rneqi 4857 . 2  |-  ran  ( A  |`  (/) )  =  ran  (/)
4 rn0 4885 . 2  |-  ran  (/)  =  (/)
51, 3, 43eqtri 2202 1  |-  ( A
" (/) )  =  (/)
Colors of variables: wff set class
Syntax hints:    = wceq 1353   (/)c0 3424   ran crn 4629    |` cres 4630   "cima 4631
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-v 2741  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-br 4006  df-opab 4067  df-xp 4634  df-cnv 4636  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641
This theorem is referenced by:  fiintim  6930  fidcenumlemrk  6955  fidcenumlemr  6956  ennnfonelem1  12410  ennnfonelemhf1o  12416
  Copyright terms: Public domain W3C validator