ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  recexgt0 Unicode version

Theorem recexgt0 8539
Description: Existence of reciprocal of positive real number. (Contributed by Jim Kingdon, 6-Feb-2020.)
Assertion
Ref Expression
recexgt0  |-  ( ( A  e.  RR  /\  0  <  A )  ->  E. x  e.  RR  ( 0  <  x  /\  ( A  x.  x
)  =  1 ) )
Distinct variable group:    x, A

Proof of Theorem recexgt0
StepHypRef Expression
1 ax-precex 7923 . 2  |-  ( ( A  e.  RR  /\  0  <RR  A )  ->  E. x  e.  RR  ( 0  <RR  x  /\  ( A  x.  x
)  =  1 ) )
2 0re 7959 . . . 4  |-  0  e.  RR
3 ltxrlt 8025 . . . 4  |-  ( ( 0  e.  RR  /\  A  e.  RR )  ->  ( 0  <  A  <->  0 
<RR  A ) )
42, 3mpan 424 . . 3  |-  ( A  e.  RR  ->  (
0  <  A  <->  0  <RR  A ) )
54pm5.32i 454 . 2  |-  ( ( A  e.  RR  /\  0  <  A )  <->  ( A  e.  RR  /\  0  <RR  A ) )
6 ltxrlt 8025 . . . . 5  |-  ( ( 0  e.  RR  /\  x  e.  RR )  ->  ( 0  <  x  <->  0 
<RR  x ) )
72, 6mpan 424 . . . 4  |-  ( x  e.  RR  ->  (
0  <  x  <->  0  <RR  x ) )
87anbi1d 465 . . 3  |-  ( x  e.  RR  ->  (
( 0  <  x  /\  ( A  x.  x
)  =  1 )  <-> 
( 0  <RR  x  /\  ( A  x.  x
)  =  1 ) ) )
98rexbiia 2492 . 2  |-  ( E. x  e.  RR  (
0  <  x  /\  ( A  x.  x
)  =  1 )  <->  E. x  e.  RR  ( 0  <RR  x  /\  ( A  x.  x
)  =  1 ) )
101, 5, 93imtr4i 201 1  |-  ( ( A  e.  RR  /\  0  <  A )  ->  E. x  e.  RR  ( 0  <  x  /\  ( A  x.  x
)  =  1 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1353    e. wcel 2148   E.wrex 2456   class class class wbr 4005  (class class class)co 5877   RRcr 7812   0cc0 7813   1c1 7814    <RR cltrr 7817    x. cmul 7818    < clt 7994
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-cnex 7904  ax-resscn 7905  ax-1re 7907  ax-addrcl 7910  ax-rnegex 7922  ax-precex 7923
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2741  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-br 4006  df-opab 4067  df-xp 4634  df-pnf 7996  df-mnf 7997  df-ltxr 7999
This theorem is referenced by:  ltmul1  8551
  Copyright terms: Public domain W3C validator