ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  recexgt0 Unicode version

Theorem recexgt0 8727
Description: Existence of reciprocal of positive real number. (Contributed by Jim Kingdon, 6-Feb-2020.)
Assertion
Ref Expression
recexgt0  |-  ( ( A  e.  RR  /\  0  <  A )  ->  E. x  e.  RR  ( 0  <  x  /\  ( A  x.  x
)  =  1 ) )
Distinct variable group:    x, A

Proof of Theorem recexgt0
StepHypRef Expression
1 ax-precex 8109 . 2  |-  ( ( A  e.  RR  /\  0  <RR  A )  ->  E. x  e.  RR  ( 0  <RR  x  /\  ( A  x.  x
)  =  1 ) )
2 0re 8146 . . . 4  |-  0  e.  RR
3 ltxrlt 8212 . . . 4  |-  ( ( 0  e.  RR  /\  A  e.  RR )  ->  ( 0  <  A  <->  0 
<RR  A ) )
42, 3mpan 424 . . 3  |-  ( A  e.  RR  ->  (
0  <  A  <->  0  <RR  A ) )
54pm5.32i 454 . 2  |-  ( ( A  e.  RR  /\  0  <  A )  <->  ( A  e.  RR  /\  0  <RR  A ) )
6 ltxrlt 8212 . . . . 5  |-  ( ( 0  e.  RR  /\  x  e.  RR )  ->  ( 0  <  x  <->  0 
<RR  x ) )
72, 6mpan 424 . . . 4  |-  ( x  e.  RR  ->  (
0  <  x  <->  0  <RR  x ) )
87anbi1d 465 . . 3  |-  ( x  e.  RR  ->  (
( 0  <  x  /\  ( A  x.  x
)  =  1 )  <-> 
( 0  <RR  x  /\  ( A  x.  x
)  =  1 ) ) )
98rexbiia 2545 . 2  |-  ( E. x  e.  RR  (
0  <  x  /\  ( A  x.  x
)  =  1 )  <->  E. x  e.  RR  ( 0  <RR  x  /\  ( A  x.  x
)  =  1 ) )
101, 5, 93imtr4i 201 1  |-  ( ( A  e.  RR  /\  0  <  A )  ->  E. x  e.  RR  ( 0  <  x  /\  ( A  x.  x
)  =  1 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1395    e. wcel 2200   E.wrex 2509   class class class wbr 4083  (class class class)co 6001   RRcr 7998   0cc0 7999   1c1 8000    <RR cltrr 8003    x. cmul 8004    < clt 8181
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8090  ax-resscn 8091  ax-1re 8093  ax-addrcl 8096  ax-rnegex 8108  ax-precex 8109
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-xp 4725  df-pnf 8183  df-mnf 8184  df-ltxr 8186
This theorem is referenced by:  ltmul1  8739
  Copyright terms: Public domain W3C validator