ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  recexgt0 Unicode version

Theorem recexgt0 8655
Description: Existence of reciprocal of positive real number. (Contributed by Jim Kingdon, 6-Feb-2020.)
Assertion
Ref Expression
recexgt0  |-  ( ( A  e.  RR  /\  0  <  A )  ->  E. x  e.  RR  ( 0  <  x  /\  ( A  x.  x
)  =  1 ) )
Distinct variable group:    x, A

Proof of Theorem recexgt0
StepHypRef Expression
1 ax-precex 8037 . 2  |-  ( ( A  e.  RR  /\  0  <RR  A )  ->  E. x  e.  RR  ( 0  <RR  x  /\  ( A  x.  x
)  =  1 ) )
2 0re 8074 . . . 4  |-  0  e.  RR
3 ltxrlt 8140 . . . 4  |-  ( ( 0  e.  RR  /\  A  e.  RR )  ->  ( 0  <  A  <->  0 
<RR  A ) )
42, 3mpan 424 . . 3  |-  ( A  e.  RR  ->  (
0  <  A  <->  0  <RR  A ) )
54pm5.32i 454 . 2  |-  ( ( A  e.  RR  /\  0  <  A )  <->  ( A  e.  RR  /\  0  <RR  A ) )
6 ltxrlt 8140 . . . . 5  |-  ( ( 0  e.  RR  /\  x  e.  RR )  ->  ( 0  <  x  <->  0 
<RR  x ) )
72, 6mpan 424 . . . 4  |-  ( x  e.  RR  ->  (
0  <  x  <->  0  <RR  x ) )
87anbi1d 465 . . 3  |-  ( x  e.  RR  ->  (
( 0  <  x  /\  ( A  x.  x
)  =  1 )  <-> 
( 0  <RR  x  /\  ( A  x.  x
)  =  1 ) ) )
98rexbiia 2521 . 2  |-  ( E. x  e.  RR  (
0  <  x  /\  ( A  x.  x
)  =  1 )  <->  E. x  e.  RR  ( 0  <RR  x  /\  ( A  x.  x
)  =  1 ) )
101, 5, 93imtr4i 201 1  |-  ( ( A  e.  RR  /\  0  <  A )  ->  E. x  e.  RR  ( 0  <  x  /\  ( A  x.  x
)  =  1 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2176   E.wrex 2485   class class class wbr 4045  (class class class)co 5946   RRcr 7926   0cc0 7927   1c1 7928    <RR cltrr 7931    x. cmul 7932    < clt 8109
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4163  ax-pow 4219  ax-pr 4254  ax-un 4481  ax-setind 4586  ax-cnex 8018  ax-resscn 8019  ax-1re 8021  ax-addrcl 8024  ax-rnegex 8036  ax-precex 8037
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-rab 2493  df-v 2774  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4046  df-opab 4107  df-xp 4682  df-pnf 8111  df-mnf 8112  df-ltxr 8114
This theorem is referenced by:  ltmul1  8667
  Copyright terms: Public domain W3C validator