Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > djur | Unicode version |
Description: A member of a disjoint union can be mapped from one of the classes which produced it. (Contributed by Jim Kingdon, 23-Jun-2022.) Upgrade implication to biconditional and shorten proof. (Revised by BJ, 14-Jul-2023.) |
Ref | Expression |
---|---|
djur | ⊔ inl inr |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldju 7057 | . 2 ⊔ inl inr | |
2 | fvres 5531 | . . . . 5 inl inl | |
3 | 2 | eqeq2d 2187 | . . . 4 inl inl |
4 | 3 | rexbiia 2490 | . . 3 inl inl |
5 | fvres 5531 | . . . . 5 inr inr | |
6 | 5 | eqeq2d 2187 | . . . 4 inr inr |
7 | 6 | rexbiia 2490 | . . 3 inr inr |
8 | 4, 7 | orbi12i 764 | . 2 inl inr inl inr |
9 | 1, 8 | bitri 184 | 1 ⊔ inl inr |
Colors of variables: wff set class |
Syntax hints: wb 105 wo 708 wceq 1353 wcel 2146 wrex 2454 cres 4622 cfv 5208 ⊔ cdju 7026 inlcinl 7034 inrcinr 7035 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-nul 4124 ax-pow 4169 ax-pr 4203 ax-un 4427 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ral 2458 df-rex 2459 df-v 2737 df-sbc 2961 df-dif 3129 df-un 3131 df-in 3133 df-ss 3140 df-nul 3421 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-br 3999 df-opab 4060 df-mpt 4061 df-tr 4097 df-id 4287 df-iord 4360 df-on 4362 df-suc 4365 df-xp 4626 df-rel 4627 df-cnv 4628 df-co 4629 df-dm 4630 df-rn 4631 df-res 4632 df-iota 5170 df-fun 5210 df-fn 5211 df-f 5212 df-f1 5213 df-fo 5214 df-f1o 5215 df-fv 5216 df-1st 6131 df-2nd 6132 df-1o 6407 df-dju 7027 df-inl 7036 df-inr 7037 |
This theorem is referenced by: djuss 7059 updjud 7071 omp1eomlem 7083 0ct 7096 ctmlemr 7097 ctssdclemn0 7099 fodjuomnilemdc 7132 exmidfodomrlemeldju 7188 |
Copyright terms: Public domain | W3C validator |