ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  djur Unicode version

Theorem djur 7135
Description: A member of a disjoint union can be mapped from one of the classes which produced it. (Contributed by Jim Kingdon, 23-Jun-2022.) Upgrade implication to biconditional and shorten proof. (Revised by BJ, 14-Jul-2023.)
Assertion
Ref Expression
djur  |-  ( C  e.  ( A B )  <-> 
( E. x  e.  A  C  =  (inl
`  x )  \/ 
E. x  e.  B  C  =  (inr `  x
) ) )
Distinct variable groups:    x, A    x, B    x, C

Proof of Theorem djur
StepHypRef Expression
1 eldju 7134 . 2  |-  ( C  e.  ( A B )  <-> 
( E. x  e.  A  C  =  ( (inl  |`  A ) `  x )  \/  E. x  e.  B  C  =  ( (inr  |`  B ) `
 x ) ) )
2 fvres 5582 . . . . 5  |-  ( x  e.  A  ->  (
(inl  |`  A ) `  x )  =  (inl
`  x ) )
32eqeq2d 2208 . . . 4  |-  ( x  e.  A  ->  ( C  =  ( (inl  |`  A ) `  x
)  <->  C  =  (inl `  x ) ) )
43rexbiia 2512 . . 3  |-  ( E. x  e.  A  C  =  ( (inl  |`  A ) `
 x )  <->  E. x  e.  A  C  =  (inl `  x ) )
5 fvres 5582 . . . . 5  |-  ( x  e.  B  ->  (
(inr  |`  B ) `  x )  =  (inr
`  x ) )
65eqeq2d 2208 . . . 4  |-  ( x  e.  B  ->  ( C  =  ( (inr  |`  B ) `  x
)  <->  C  =  (inr `  x ) ) )
76rexbiia 2512 . . 3  |-  ( E. x  e.  B  C  =  ( (inr  |`  B ) `
 x )  <->  E. x  e.  B  C  =  (inr `  x ) )
84, 7orbi12i 765 . 2  |-  ( ( E. x  e.  A  C  =  ( (inl  |`  A ) `  x
)  \/  E. x  e.  B  C  =  ( (inr  |`  B ) `
 x ) )  <-> 
( E. x  e.  A  C  =  (inl
`  x )  \/ 
E. x  e.  B  C  =  (inr `  x
) ) )
91, 8bitri 184 1  |-  ( C  e.  ( A B )  <-> 
( E. x  e.  A  C  =  (inl
`  x )  \/ 
E. x  e.  B  C  =  (inr `  x
) ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 105    \/ wo 709    = wceq 1364    e. wcel 2167   E.wrex 2476    |` cres 4665   ` cfv 5258   ⊔ cdju 7103  inlcinl 7111  inrcinr 7112
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-iord 4401  df-on 4403  df-suc 4406  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-1st 6198  df-2nd 6199  df-1o 6474  df-dju 7104  df-inl 7113  df-inr 7114
This theorem is referenced by:  djuss  7136  updjud  7148  omp1eomlem  7160  0ct  7173  ctmlemr  7174  ctssdclemn0  7176  fodjuomnilemdc  7210  exmidfodomrlemeldju  7266
  Copyright terms: Public domain W3C validator