Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > djur | Unicode version |
Description: A member of a disjoint union can be mapped from one of the classes which produced it. (Contributed by Jim Kingdon, 23-Jun-2022.) Upgrade implication to biconditional and shorten proof. (Revised by BJ, 14-Jul-2023.) |
Ref | Expression |
---|---|
djur | ⊔ inl inr |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldju 7041 | . 2 ⊔ inl inr | |
2 | fvres 5518 | . . . . 5 inl inl | |
3 | 2 | eqeq2d 2182 | . . . 4 inl inl |
4 | 3 | rexbiia 2485 | . . 3 inl inl |
5 | fvres 5518 | . . . . 5 inr inr | |
6 | 5 | eqeq2d 2182 | . . . 4 inr inr |
7 | 6 | rexbiia 2485 | . . 3 inr inr |
8 | 4, 7 | orbi12i 759 | . 2 inl inr inl inr |
9 | 1, 8 | bitri 183 | 1 ⊔ inl inr |
Colors of variables: wff set class |
Syntax hints: wb 104 wo 703 wceq 1348 wcel 2141 wrex 2449 cres 4611 cfv 5196 ⊔ cdju 7010 inlcinl 7018 inrcinr 7019 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4105 ax-nul 4113 ax-pow 4158 ax-pr 4192 ax-un 4416 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-sbc 2956 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3566 df-sn 3587 df-pr 3588 df-op 3590 df-uni 3795 df-br 3988 df-opab 4049 df-mpt 4050 df-tr 4086 df-id 4276 df-iord 4349 df-on 4351 df-suc 4354 df-xp 4615 df-rel 4616 df-cnv 4617 df-co 4618 df-dm 4619 df-rn 4620 df-res 4621 df-iota 5158 df-fun 5198 df-fn 5199 df-f 5200 df-f1 5201 df-fo 5202 df-f1o 5203 df-fv 5204 df-1st 6116 df-2nd 6117 df-1o 6392 df-dju 7011 df-inl 7020 df-inr 7021 |
This theorem is referenced by: djuss 7043 updjud 7055 omp1eomlem 7067 0ct 7080 ctmlemr 7081 ctssdclemn0 7083 fodjuomnilemdc 7116 exmidfodomrlemeldju 7163 |
Copyright terms: Public domain | W3C validator |