ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  djur Unicode version

Theorem djur 7085
Description: A member of a disjoint union can be mapped from one of the classes which produced it. (Contributed by Jim Kingdon, 23-Jun-2022.) Upgrade implication to biconditional and shorten proof. (Revised by BJ, 14-Jul-2023.)
Assertion
Ref Expression
djur  |-  ( C  e.  ( A B )  <-> 
( E. x  e.  A  C  =  (inl
`  x )  \/ 
E. x  e.  B  C  =  (inr `  x
) ) )
Distinct variable groups:    x, A    x, B    x, C

Proof of Theorem djur
StepHypRef Expression
1 eldju 7084 . 2  |-  ( C  e.  ( A B )  <-> 
( E. x  e.  A  C  =  ( (inl  |`  A ) `  x )  \/  E. x  e.  B  C  =  ( (inr  |`  B ) `
 x ) ) )
2 fvres 5553 . . . . 5  |-  ( x  e.  A  ->  (
(inl  |`  A ) `  x )  =  (inl
`  x ) )
32eqeq2d 2200 . . . 4  |-  ( x  e.  A  ->  ( C  =  ( (inl  |`  A ) `  x
)  <->  C  =  (inl `  x ) ) )
43rexbiia 2504 . . 3  |-  ( E. x  e.  A  C  =  ( (inl  |`  A ) `
 x )  <->  E. x  e.  A  C  =  (inl `  x ) )
5 fvres 5553 . . . . 5  |-  ( x  e.  B  ->  (
(inr  |`  B ) `  x )  =  (inr
`  x ) )
65eqeq2d 2200 . . . 4  |-  ( x  e.  B  ->  ( C  =  ( (inr  |`  B ) `  x
)  <->  C  =  (inr `  x ) ) )
76rexbiia 2504 . . 3  |-  ( E. x  e.  B  C  =  ( (inr  |`  B ) `
 x )  <->  E. x  e.  B  C  =  (inr `  x ) )
84, 7orbi12i 765 . 2  |-  ( ( E. x  e.  A  C  =  ( (inl  |`  A ) `  x
)  \/  E. x  e.  B  C  =  ( (inr  |`  B ) `
 x ) )  <-> 
( E. x  e.  A  C  =  (inl
`  x )  \/ 
E. x  e.  B  C  =  (inr `  x
) ) )
91, 8bitri 184 1  |-  ( C  e.  ( A B )  <-> 
( E. x  e.  A  C  =  (inl
`  x )  \/ 
E. x  e.  B  C  =  (inr `  x
) ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 105    \/ wo 709    = wceq 1363    e. wcel 2159   E.wrex 2468    |` cres 4642   ` cfv 5230   ⊔ cdju 7053  inlcinl 7061  inrcinr 7062
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2161  ax-14 2162  ax-ext 2170  ax-sep 4135  ax-nul 4143  ax-pow 4188  ax-pr 4223  ax-un 4447
This theorem depends on definitions:  df-bi 117  df-3an 981  df-tru 1366  df-nf 1471  df-sb 1773  df-eu 2040  df-mo 2041  df-clab 2175  df-cleq 2181  df-clel 2184  df-nfc 2320  df-ral 2472  df-rex 2473  df-v 2753  df-sbc 2977  df-dif 3145  df-un 3147  df-in 3149  df-ss 3156  df-nul 3437  df-pw 3591  df-sn 3612  df-pr 3613  df-op 3615  df-uni 3824  df-br 4018  df-opab 4079  df-mpt 4080  df-tr 4116  df-id 4307  df-iord 4380  df-on 4382  df-suc 4385  df-xp 4646  df-rel 4647  df-cnv 4648  df-co 4649  df-dm 4650  df-rn 4651  df-res 4652  df-iota 5192  df-fun 5232  df-fn 5233  df-f 5234  df-f1 5235  df-fo 5236  df-f1o 5237  df-fv 5238  df-1st 6158  df-2nd 6159  df-1o 6434  df-dju 7054  df-inl 7063  df-inr 7064
This theorem is referenced by:  djuss  7086  updjud  7098  omp1eomlem  7110  0ct  7123  ctmlemr  7124  ctssdclemn0  7126  fodjuomnilemdc  7159  exmidfodomrlemeldju  7215
  Copyright terms: Public domain W3C validator