ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ioocosf1o Unicode version

Theorem ioocosf1o 13114
Description: The cosine function is a bijection when restricted to its principal domain. (Contributed by Mario Carneiro, 12-May-2014.) (Revised by Jim Kingdon, 7-May-2024.)
Assertion
Ref Expression
ioocosf1o  |-  ( cos  |`  ( 0 (,) pi ) ) : ( 0 (,) pi ) -1-1-onto-> (
-u 1 (,) 1
)

Proof of Theorem ioocosf1o
Dummy variables  x  w  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cosf 11579 . . . . . 6  |-  cos : CC
--> CC
2 ffn 5312 . . . . . 6  |-  ( cos
: CC --> CC  ->  cos 
Fn  CC )
31, 2ax-mp 5 . . . . 5  |-  cos  Fn  CC
4 ioossre 9817 . . . . . 6  |-  ( 0 (,) pi )  C_  RR
5 ax-resscn 7803 . . . . . 6  |-  RR  C_  CC
64, 5sstri 3133 . . . . 5  |-  ( 0 (,) pi )  C_  CC
7 fnssres 5276 . . . . 5  |-  ( ( cos  Fn  CC  /\  ( 0 (,) pi )  C_  CC )  -> 
( cos  |`  ( 0 (,) pi ) )  Fn  ( 0 (,) pi ) )
83, 6, 7mp2an 423 . . . 4  |-  ( cos  |`  ( 0 (,) pi ) )  Fn  (
0 (,) pi )
9 fvres 5485 . . . . . 6  |-  ( x  e.  ( 0 (,) pi )  ->  (
( cos  |`  ( 0 (,) pi ) ) `
 x )  =  ( cos `  x
) )
10 cos0pilt1 13112 . . . . . 6  |-  ( x  e.  ( 0 (,) pi )  ->  ( cos `  x )  e.  ( -u 1 (,) 1 ) )
119, 10eqeltrd 2231 . . . . 5  |-  ( x  e.  ( 0 (,) pi )  ->  (
( cos  |`  ( 0 (,) pi ) ) `
 x )  e.  ( -u 1 (,) 1 ) )
1211rgen 2507 . . . 4  |-  A. x  e.  ( 0 (,) pi ) ( ( cos  |`  ( 0 (,) pi ) ) `  x
)  e.  ( -u
1 (,) 1 )
13 ffnfv 5618 . . . 4  |-  ( ( cos  |`  ( 0 (,) pi ) ) : ( 0 (,) pi ) --> ( -u
1 (,) 1 )  <-> 
( ( cos  |`  (
0 (,) pi ) )  Fn  ( 0 (,) pi )  /\  A. x  e.  ( 0 (,) pi ) ( ( cos  |`  (
0 (,) pi ) ) `  x )  e.  ( -u 1 (,) 1 ) ) )
148, 12, 13mpbir2an 927 . . 3  |-  ( cos  |`  ( 0 (,) pi ) ) : ( 0 (,) pi ) --> ( -u 1 (,) 1 )
15 fvres 5485 . . . . . 6  |-  ( y  e.  ( 0 (,) pi )  ->  (
( cos  |`  ( 0 (,) pi ) ) `
 y )  =  ( cos `  y
) )
169, 15eqeqan12d 2170 . . . . 5  |-  ( ( x  e.  ( 0 (,) pi )  /\  y  e.  ( 0 (,) pi ) )  ->  ( ( ( cos  |`  ( 0 (,) pi ) ) `
 x )  =  ( ( cos  |`  (
0 (,) pi ) ) `  y )  <-> 
( cos `  x
)  =  ( cos `  y ) ) )
17 ioossicc 9841 . . . . . . 7  |-  ( 0 (,) pi )  C_  ( 0 [,] pi )
1817sseli 3120 . . . . . 6  |-  ( x  e.  ( 0 (,) pi )  ->  x  e.  ( 0 [,] pi ) )
1917sseli 3120 . . . . . 6  |-  ( y  e.  ( 0 (,) pi )  ->  y  e.  ( 0 [,] pi ) )
20 cos11 13113 . . . . . . 7  |-  ( ( x  e.  ( 0 [,] pi )  /\  y  e.  ( 0 [,] pi ) )  ->  ( x  =  y  <->  ( cos `  x
)  =  ( cos `  y ) ) )
2120biimprd 157 . . . . . 6  |-  ( ( x  e.  ( 0 [,] pi )  /\  y  e.  ( 0 [,] pi ) )  ->  ( ( cos `  x )  =  ( cos `  y )  ->  x  =  y ) )
2218, 19, 21syl2an 287 . . . . 5  |-  ( ( x  e.  ( 0 (,) pi )  /\  y  e.  ( 0 (,) pi ) )  ->  ( ( cos `  x )  =  ( cos `  y )  ->  x  =  y ) )
2316, 22sylbid 149 . . . 4  |-  ( ( x  e.  ( 0 (,) pi )  /\  y  e.  ( 0 (,) pi ) )  ->  ( ( ( cos  |`  ( 0 (,) pi ) ) `
 x )  =  ( ( cos  |`  (
0 (,) pi ) ) `  y )  ->  x  =  y ) )
2423rgen2 2540 . . 3  |-  A. x  e.  ( 0 (,) pi ) A. y  e.  ( 0 (,) pi ) ( ( ( cos  |`  ( 0 (,) pi ) ) `  x
)  =  ( ( cos  |`  ( 0 (,) pi ) ) `
 y )  ->  x  =  y )
25 dff13 5709 . . 3  |-  ( ( cos  |`  ( 0 (,) pi ) ) : ( 0 (,) pi ) -1-1-> ( -u
1 (,) 1 )  <-> 
( ( cos  |`  (
0 (,) pi ) ) : ( 0 (,) pi ) --> (
-u 1 (,) 1
)  /\  A. x  e.  ( 0 (,) pi ) A. y  e.  ( 0 (,) pi ) ( ( ( cos  |`  ( 0 (,) pi ) ) `  x
)  =  ( ( cos  |`  ( 0 (,) pi ) ) `
 y )  ->  x  =  y )
) )
2614, 24, 25mpbir2an 927 . 2  |-  ( cos  |`  ( 0 (,) pi ) ) : ( 0 (,) pi )
-1-1-> ( -u 1 (,) 1 )
27 0red 7858 . . . . . 6  |-  ( x  e.  ( -u 1 (,) 1 )  ->  0  e.  RR )
28 pire 13046 . . . . . . 7  |-  pi  e.  RR
2928a1i 9 . . . . . 6  |-  ( x  e.  ( -u 1 (,) 1 )  ->  pi  e.  RR )
30 elioore 9794 . . . . . 6  |-  ( x  e.  ( -u 1 (,) 1 )  ->  x  e.  RR )
31 pipos 13048 . . . . . . 7  |-  0  <  pi
3231a1i 9 . . . . . 6  |-  ( x  e.  ( -u 1 (,) 1 )  ->  0  <  pi )
33 0re 7857 . . . . . . . . 9  |-  0  e.  RR
34 iccssre 9837 . . . . . . . . 9  |-  ( ( 0  e.  RR  /\  pi  e.  RR )  -> 
( 0 [,] pi )  C_  RR )
3533, 28, 34mp2an 423 . . . . . . . 8  |-  ( 0 [,] pi )  C_  RR
3635, 5sstri 3133 . . . . . . 7  |-  ( 0 [,] pi )  C_  CC
3736a1i 9 . . . . . 6  |-  ( x  e.  ( -u 1 (,) 1 )  ->  (
0 [,] pi ) 
C_  CC )
38 coscn 13030 . . . . . . 7  |-  cos  e.  ( CC -cn-> CC )
3938a1i 9 . . . . . 6  |-  ( x  e.  ( -u 1 (,) 1 )  ->  cos  e.  ( CC -cn-> CC ) )
4035sseli 3120 . . . . . . . 8  |-  ( z  e.  ( 0 [,] pi )  ->  z  e.  RR )
4140recoscld 11598 . . . . . . 7  |-  ( z  e.  ( 0 [,] pi )  ->  ( cos `  z )  e.  RR )
4241adantl 275 . . . . . 6  |-  ( ( x  e.  ( -u
1 (,) 1 )  /\  z  e.  ( 0 [,] pi ) )  ->  ( cos `  z )  e.  RR )
43 cospi 13060 . . . . . . . 8  |-  ( cos `  pi )  =  -u
1
44 neg1rr 8918 . . . . . . . . . . 11  |-  -u 1  e.  RR
4544rexri 7914 . . . . . . . . . 10  |-  -u 1  e.  RR*
46 1re 7856 . . . . . . . . . . 11  |-  1  e.  RR
4746rexri 7914 . . . . . . . . . 10  |-  1  e.  RR*
48 elioo2 9803 . . . . . . . . . 10  |-  ( (
-u 1  e.  RR*  /\  1  e.  RR* )  ->  ( x  e.  (
-u 1 (,) 1
)  <->  ( x  e.  RR  /\  -u 1  <  x  /\  x  <  1 ) ) )
4945, 47, 48mp2an 423 . . . . . . . . 9  |-  ( x  e.  ( -u 1 (,) 1 )  <->  ( x  e.  RR  /\  -u 1  <  x  /\  x  <  1 ) )
5049simp2bi 998 . . . . . . . 8  |-  ( x  e.  ( -u 1 (,) 1 )  ->  -u 1  <  x )
5143, 50eqbrtrid 3995 . . . . . . 7  |-  ( x  e.  ( -u 1 (,) 1 )  ->  ( cos `  pi )  < 
x )
5249simp3bi 999 . . . . . . . 8  |-  ( x  e.  ( -u 1 (,) 1 )  ->  x  <  1 )
53 cos0 11604 . . . . . . . 8  |-  ( cos `  0 )  =  1
5452, 53breqtrrdi 4002 . . . . . . 7  |-  ( x  e.  ( -u 1 (,) 1 )  ->  x  <  ( cos `  0
) )
5551, 54jca 304 . . . . . 6  |-  ( x  e.  ( -u 1 (,) 1 )  ->  (
( cos `  pi )  <  x  /\  x  <  ( cos `  0
) ) )
56 simplr 520 . . . . . . 7  |-  ( ( ( x  e.  (
-u 1 (,) 1
)  /\  z  e.  ( 0 [,] pi ) )  /\  (
w  e.  ( 0 [,] pi )  /\  z  <  w ) )  ->  z  e.  ( 0 [,] pi ) )
57 simprl 521 . . . . . . 7  |-  ( ( ( x  e.  (
-u 1 (,) 1
)  /\  z  e.  ( 0 [,] pi ) )  /\  (
w  e.  ( 0 [,] pi )  /\  z  <  w ) )  ->  w  e.  ( 0 [,] pi ) )
58 simprr 522 . . . . . . 7  |-  ( ( ( x  e.  (
-u 1 (,) 1
)  /\  z  e.  ( 0 [,] pi ) )  /\  (
w  e.  ( 0 [,] pi )  /\  z  <  w ) )  ->  z  <  w
)
5956, 57, 58cosordlem 13109 . . . . . 6  |-  ( ( ( x  e.  (
-u 1 (,) 1
)  /\  z  e.  ( 0 [,] pi ) )  /\  (
w  e.  ( 0 [,] pi )  /\  z  <  w ) )  ->  ( cos `  w
)  <  ( cos `  z ) )
6027, 29, 30, 32, 37, 39, 42, 55, 59ivthdec 12961 . . . . 5  |-  ( x  e.  ( -u 1 (,) 1 )  ->  E. y  e.  ( 0 (,) pi ) ( cos `  y
)  =  x )
61 eqcom 2156 . . . . . . 7  |-  ( x  =  ( ( cos  |`  ( 0 (,) pi ) ) `  y
)  <->  ( ( cos  |`  ( 0 (,) pi ) ) `  y
)  =  x )
6215eqeq1d 2163 . . . . . . 7  |-  ( y  e.  ( 0 (,) pi )  ->  (
( ( cos  |`  (
0 (,) pi ) ) `  y )  =  x  <->  ( cos `  y )  =  x ) )
6361, 62syl5bb 191 . . . . . 6  |-  ( y  e.  ( 0 (,) pi )  ->  (
x  =  ( ( cos  |`  ( 0 (,) pi ) ) `
 y )  <->  ( cos `  y )  =  x ) )
6463rexbiia 2469 . . . . 5  |-  ( E. y  e.  ( 0 (,) pi ) x  =  ( ( cos  |`  ( 0 (,) pi ) ) `  y
)  <->  E. y  e.  ( 0 (,) pi ) ( cos `  y
)  =  x )
6560, 64sylibr 133 . . . 4  |-  ( x  e.  ( -u 1 (,) 1 )  ->  E. y  e.  ( 0 (,) pi ) x  =  (
( cos  |`  ( 0 (,) pi ) ) `
 y ) )
6665rgen 2507 . . 3  |-  A. x  e.  ( -u 1 (,) 1 ) E. y  e.  ( 0 (,) pi ) x  =  (
( cos  |`  ( 0 (,) pi ) ) `
 y )
67 dffo3 5607 . . 3  |-  ( ( cos  |`  ( 0 (,) pi ) ) : ( 0 (,) pi ) -onto-> ( -u
1 (,) 1 )  <-> 
( ( cos  |`  (
0 (,) pi ) ) : ( 0 (,) pi ) --> (
-u 1 (,) 1
)  /\  A. x  e.  ( -u 1 (,) 1 ) E. y  e.  ( 0 (,) pi ) x  =  (
( cos  |`  ( 0 (,) pi ) ) `
 y ) ) )
6814, 66, 67mpbir2an 927 . 2  |-  ( cos  |`  ( 0 (,) pi ) ) : ( 0 (,) pi )
-onto-> ( -u 1 (,) 1 )
69 df-f1o 5170 . 2  |-  ( ( cos  |`  ( 0 (,) pi ) ) : ( 0 (,) pi ) -1-1-onto-> ( -u 1 (,) 1 )  <->  ( ( cos  |`  ( 0 (,) pi ) ) : ( 0 (,) pi ) -1-1-> ( -u 1 (,) 1 )  /\  ( cos  |`  ( 0 (,) pi ) ) : ( 0 (,) pi ) -onto-> ( -u 1 (,) 1 ) ) )
7026, 68, 69mpbir2an 927 1  |-  ( cos  |`  ( 0 (,) pi ) ) : ( 0 (,) pi ) -1-1-onto-> (
-u 1 (,) 1
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 963    = wceq 1332    e. wcel 2125   A.wral 2432   E.wrex 2433    C_ wss 3098   class class class wbr 3961    |` cres 4581    Fn wfn 5158   -->wf 5159   -1-1->wf1 5160   -onto->wfo 5161   -1-1-onto->wf1o 5162   ` cfv 5163  (class class class)co 5814   CCcc 7709   RRcr 7710   0cc0 7711   1c1 7712   RR*cxr 7890    < clt 7891   -ucneg 8026   (,)cioo 9770   [,]cicc 9773   cosccos 11519   picpi 11521   -cn->ccncf 12896
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1481  ax-10 1482  ax-11 1483  ax-i12 1484  ax-bndl 1486  ax-4 1487  ax-17 1503  ax-i9 1507  ax-ial 1511  ax-i5r 1512  ax-13 2127  ax-14 2128  ax-ext 2136  ax-coll 4075  ax-sep 4078  ax-nul 4086  ax-pow 4130  ax-pr 4164  ax-un 4388  ax-setind 4490  ax-iinf 4541  ax-cnex 7802  ax-resscn 7803  ax-1cn 7804  ax-1re 7805  ax-icn 7806  ax-addcl 7807  ax-addrcl 7808  ax-mulcl 7809  ax-mulrcl 7810  ax-addcom 7811  ax-mulcom 7812  ax-addass 7813  ax-mulass 7814  ax-distr 7815  ax-i2m1 7816  ax-0lt1 7817  ax-1rid 7818  ax-0id 7819  ax-rnegex 7820  ax-precex 7821  ax-cnre 7822  ax-pre-ltirr 7823  ax-pre-ltwlin 7824  ax-pre-lttrn 7825  ax-pre-apti 7826  ax-pre-ltadd 7827  ax-pre-mulgt0 7828  ax-pre-mulext 7829  ax-arch 7830  ax-caucvg 7831  ax-pre-suploc 7832  ax-addf 7833  ax-mulf 7834
This theorem depends on definitions:  df-bi 116  df-stab 817  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1740  df-eu 2006  df-mo 2007  df-clab 2141  df-cleq 2147  df-clel 2150  df-nfc 2285  df-ne 2325  df-nel 2420  df-ral 2437  df-rex 2438  df-reu 2439  df-rmo 2440  df-rab 2441  df-v 2711  df-sbc 2934  df-csb 3028  df-dif 3100  df-un 3102  df-in 3104  df-ss 3111  df-nul 3391  df-if 3502  df-pw 3541  df-sn 3562  df-pr 3563  df-op 3565  df-uni 3769  df-int 3804  df-iun 3847  df-disj 3939  df-br 3962  df-opab 4022  df-mpt 4023  df-tr 4059  df-id 4248  df-po 4251  df-iso 4252  df-iord 4321  df-on 4323  df-ilim 4324  df-suc 4326  df-iom 4544  df-xp 4585  df-rel 4586  df-cnv 4587  df-co 4588  df-dm 4589  df-rn 4590  df-res 4591  df-ima 4592  df-iota 5128  df-fun 5165  df-fn 5166  df-f 5167  df-f1 5168  df-fo 5169  df-f1o 5170  df-fv 5171  df-isom 5172  df-riota 5770  df-ov 5817  df-oprab 5818  df-mpo 5819  df-of 6022  df-1st 6078  df-2nd 6079  df-recs 6242  df-irdg 6307  df-frec 6328  df-1o 6353  df-oadd 6357  df-er 6469  df-map 6584  df-pm 6585  df-en 6675  df-dom 6676  df-fin 6677  df-sup 6916  df-inf 6917  df-pnf 7893  df-mnf 7894  df-xr 7895  df-ltxr 7896  df-le 7897  df-sub 8027  df-neg 8028  df-reap 8429  df-ap 8436  df-div 8525  df-inn 8813  df-2 8871  df-3 8872  df-4 8873  df-5 8874  df-6 8875  df-7 8876  df-8 8877  df-9 8878  df-n0 9070  df-z 9147  df-uz 9419  df-q 9507  df-rp 9539  df-xneg 9657  df-xadd 9658  df-ioo 9774  df-ioc 9775  df-ico 9776  df-icc 9777  df-fz 9891  df-fzo 10020  df-seqfrec 10323  df-exp 10397  df-fac 10577  df-bc 10599  df-ihash 10627  df-shft 10692  df-cj 10719  df-re 10720  df-im 10721  df-rsqrt 10875  df-abs 10876  df-clim 11153  df-sumdc 11228  df-ef 11522  df-sin 11524  df-cos 11525  df-pi 11527  df-rest 12292  df-topgen 12311  df-psmet 12326  df-xmet 12327  df-met 12328  df-bl 12329  df-mopn 12330  df-top 12335  df-topon 12348  df-bases 12380  df-ntr 12435  df-cn 12527  df-cnp 12528  df-tx 12592  df-cncf 12897  df-limced 12964  df-dvap 12965
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator