ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ioocosf1o Unicode version

Theorem ioocosf1o 12957
Description: The cosine function is a bijection when restricted to its principal domain. (Contributed by Mario Carneiro, 12-May-2014.) (Revised by Jim Kingdon, 7-May-2024.)
Assertion
Ref Expression
ioocosf1o  |-  ( cos  |`  ( 0 (,) pi ) ) : ( 0 (,) pi ) -1-1-onto-> (
-u 1 (,) 1
)

Proof of Theorem ioocosf1o
Dummy variables  x  w  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cosf 11423 . . . . . 6  |-  cos : CC
--> CC
2 ffn 5272 . . . . . 6  |-  ( cos
: CC --> CC  ->  cos 
Fn  CC )
31, 2ax-mp 5 . . . . 5  |-  cos  Fn  CC
4 ioossre 9730 . . . . . 6  |-  ( 0 (,) pi )  C_  RR
5 ax-resscn 7724 . . . . . 6  |-  RR  C_  CC
64, 5sstri 3106 . . . . 5  |-  ( 0 (,) pi )  C_  CC
7 fnssres 5236 . . . . 5  |-  ( ( cos  Fn  CC  /\  ( 0 (,) pi )  C_  CC )  -> 
( cos  |`  ( 0 (,) pi ) )  Fn  ( 0 (,) pi ) )
83, 6, 7mp2an 422 . . . 4  |-  ( cos  |`  ( 0 (,) pi ) )  Fn  (
0 (,) pi )
9 fvres 5445 . . . . . 6  |-  ( x  e.  ( 0 (,) pi )  ->  (
( cos  |`  ( 0 (,) pi ) ) `
 x )  =  ( cos `  x
) )
10 cos0pilt1 12955 . . . . . 6  |-  ( x  e.  ( 0 (,) pi )  ->  ( cos `  x )  e.  ( -u 1 (,) 1 ) )
119, 10eqeltrd 2216 . . . . 5  |-  ( x  e.  ( 0 (,) pi )  ->  (
( cos  |`  ( 0 (,) pi ) ) `
 x )  e.  ( -u 1 (,) 1 ) )
1211rgen 2485 . . . 4  |-  A. x  e.  ( 0 (,) pi ) ( ( cos  |`  ( 0 (,) pi ) ) `  x
)  e.  ( -u
1 (,) 1 )
13 ffnfv 5578 . . . 4  |-  ( ( cos  |`  ( 0 (,) pi ) ) : ( 0 (,) pi ) --> ( -u
1 (,) 1 )  <-> 
( ( cos  |`  (
0 (,) pi ) )  Fn  ( 0 (,) pi )  /\  A. x  e.  ( 0 (,) pi ) ( ( cos  |`  (
0 (,) pi ) ) `  x )  e.  ( -u 1 (,) 1 ) ) )
148, 12, 13mpbir2an 926 . . 3  |-  ( cos  |`  ( 0 (,) pi ) ) : ( 0 (,) pi ) --> ( -u 1 (,) 1 )
15 fvres 5445 . . . . . 6  |-  ( y  e.  ( 0 (,) pi )  ->  (
( cos  |`  ( 0 (,) pi ) ) `
 y )  =  ( cos `  y
) )
169, 15eqeqan12d 2155 . . . . 5  |-  ( ( x  e.  ( 0 (,) pi )  /\  y  e.  ( 0 (,) pi ) )  ->  ( ( ( cos  |`  ( 0 (,) pi ) ) `
 x )  =  ( ( cos  |`  (
0 (,) pi ) ) `  y )  <-> 
( cos `  x
)  =  ( cos `  y ) ) )
17 ioossicc 9754 . . . . . . 7  |-  ( 0 (,) pi )  C_  ( 0 [,] pi )
1817sseli 3093 . . . . . 6  |-  ( x  e.  ( 0 (,) pi )  ->  x  e.  ( 0 [,] pi ) )
1917sseli 3093 . . . . . 6  |-  ( y  e.  ( 0 (,) pi )  ->  y  e.  ( 0 [,] pi ) )
20 cos11 12956 . . . . . . 7  |-  ( ( x  e.  ( 0 [,] pi )  /\  y  e.  ( 0 [,] pi ) )  ->  ( x  =  y  <->  ( cos `  x
)  =  ( cos `  y ) ) )
2120biimprd 157 . . . . . 6  |-  ( ( x  e.  ( 0 [,] pi )  /\  y  e.  ( 0 [,] pi ) )  ->  ( ( cos `  x )  =  ( cos `  y )  ->  x  =  y ) )
2218, 19, 21syl2an 287 . . . . 5  |-  ( ( x  e.  ( 0 (,) pi )  /\  y  e.  ( 0 (,) pi ) )  ->  ( ( cos `  x )  =  ( cos `  y )  ->  x  =  y ) )
2316, 22sylbid 149 . . . 4  |-  ( ( x  e.  ( 0 (,) pi )  /\  y  e.  ( 0 (,) pi ) )  ->  ( ( ( cos  |`  ( 0 (,) pi ) ) `
 x )  =  ( ( cos  |`  (
0 (,) pi ) ) `  y )  ->  x  =  y ) )
2423rgen2 2518 . . 3  |-  A. x  e.  ( 0 (,) pi ) A. y  e.  ( 0 (,) pi ) ( ( ( cos  |`  ( 0 (,) pi ) ) `  x
)  =  ( ( cos  |`  ( 0 (,) pi ) ) `
 y )  ->  x  =  y )
25 dff13 5669 . . 3  |-  ( ( cos  |`  ( 0 (,) pi ) ) : ( 0 (,) pi ) -1-1-> ( -u
1 (,) 1 )  <-> 
( ( cos  |`  (
0 (,) pi ) ) : ( 0 (,) pi ) --> (
-u 1 (,) 1
)  /\  A. x  e.  ( 0 (,) pi ) A. y  e.  ( 0 (,) pi ) ( ( ( cos  |`  ( 0 (,) pi ) ) `  x
)  =  ( ( cos  |`  ( 0 (,) pi ) ) `
 y )  ->  x  =  y )
) )
2614, 24, 25mpbir2an 926 . 2  |-  ( cos  |`  ( 0 (,) pi ) ) : ( 0 (,) pi )
-1-1-> ( -u 1 (,) 1 )
27 0red 7779 . . . . . 6  |-  ( x  e.  ( -u 1 (,) 1 )  ->  0  e.  RR )
28 pire 12889 . . . . . . 7  |-  pi  e.  RR
2928a1i 9 . . . . . 6  |-  ( x  e.  ( -u 1 (,) 1 )  ->  pi  e.  RR )
30 elioore 9707 . . . . . 6  |-  ( x  e.  ( -u 1 (,) 1 )  ->  x  e.  RR )
31 pipos 12891 . . . . . . 7  |-  0  <  pi
3231a1i 9 . . . . . 6  |-  ( x  e.  ( -u 1 (,) 1 )  ->  0  <  pi )
33 0re 7778 . . . . . . . . 9  |-  0  e.  RR
34 iccssre 9750 . . . . . . . . 9  |-  ( ( 0  e.  RR  /\  pi  e.  RR )  -> 
( 0 [,] pi )  C_  RR )
3533, 28, 34mp2an 422 . . . . . . . 8  |-  ( 0 [,] pi )  C_  RR
3635, 5sstri 3106 . . . . . . 7  |-  ( 0 [,] pi )  C_  CC
3736a1i 9 . . . . . 6  |-  ( x  e.  ( -u 1 (,) 1 )  ->  (
0 [,] pi ) 
C_  CC )
38 coscn 12874 . . . . . . 7  |-  cos  e.  ( CC -cn-> CC )
3938a1i 9 . . . . . 6  |-  ( x  e.  ( -u 1 (,) 1 )  ->  cos  e.  ( CC -cn-> CC ) )
4035sseli 3093 . . . . . . . 8  |-  ( z  e.  ( 0 [,] pi )  ->  z  e.  RR )
4140recoscld 11442 . . . . . . 7  |-  ( z  e.  ( 0 [,] pi )  ->  ( cos `  z )  e.  RR )
4241adantl 275 . . . . . 6  |-  ( ( x  e.  ( -u
1 (,) 1 )  /\  z  e.  ( 0 [,] pi ) )  ->  ( cos `  z )  e.  RR )
43 cospi 12903 . . . . . . . 8  |-  ( cos `  pi )  =  -u
1
44 neg1rr 8838 . . . . . . . . . . 11  |-  -u 1  e.  RR
4544rexri 7835 . . . . . . . . . 10  |-  -u 1  e.  RR*
46 1re 7777 . . . . . . . . . . 11  |-  1  e.  RR
4746rexri 7835 . . . . . . . . . 10  |-  1  e.  RR*
48 elioo2 9716 . . . . . . . . . 10  |-  ( (
-u 1  e.  RR*  /\  1  e.  RR* )  ->  ( x  e.  (
-u 1 (,) 1
)  <->  ( x  e.  RR  /\  -u 1  <  x  /\  x  <  1 ) ) )
4945, 47, 48mp2an 422 . . . . . . . . 9  |-  ( x  e.  ( -u 1 (,) 1 )  <->  ( x  e.  RR  /\  -u 1  <  x  /\  x  <  1 ) )
5049simp2bi 997 . . . . . . . 8  |-  ( x  e.  ( -u 1 (,) 1 )  ->  -u 1  <  x )
5143, 50eqbrtrid 3963 . . . . . . 7  |-  ( x  e.  ( -u 1 (,) 1 )  ->  ( cos `  pi )  < 
x )
5249simp3bi 998 . . . . . . . 8  |-  ( x  e.  ( -u 1 (,) 1 )  ->  x  <  1 )
53 cos0 11448 . . . . . . . 8  |-  ( cos `  0 )  =  1
5452, 53breqtrrdi 3970 . . . . . . 7  |-  ( x  e.  ( -u 1 (,) 1 )  ->  x  <  ( cos `  0
) )
5551, 54jca 304 . . . . . 6  |-  ( x  e.  ( -u 1 (,) 1 )  ->  (
( cos `  pi )  <  x  /\  x  <  ( cos `  0
) ) )
56 simplr 519 . . . . . . 7  |-  ( ( ( x  e.  (
-u 1 (,) 1
)  /\  z  e.  ( 0 [,] pi ) )  /\  (
w  e.  ( 0 [,] pi )  /\  z  <  w ) )  ->  z  e.  ( 0 [,] pi ) )
57 simprl 520 . . . . . . 7  |-  ( ( ( x  e.  (
-u 1 (,) 1
)  /\  z  e.  ( 0 [,] pi ) )  /\  (
w  e.  ( 0 [,] pi )  /\  z  <  w ) )  ->  w  e.  ( 0 [,] pi ) )
58 simprr 521 . . . . . . 7  |-  ( ( ( x  e.  (
-u 1 (,) 1
)  /\  z  e.  ( 0 [,] pi ) )  /\  (
w  e.  ( 0 [,] pi )  /\  z  <  w ) )  ->  z  <  w
)
5956, 57, 58cosordlem 12952 . . . . . 6  |-  ( ( ( x  e.  (
-u 1 (,) 1
)  /\  z  e.  ( 0 [,] pi ) )  /\  (
w  e.  ( 0 [,] pi )  /\  z  <  w ) )  ->  ( cos `  w
)  <  ( cos `  z ) )
6027, 29, 30, 32, 37, 39, 42, 55, 59ivthdec 12805 . . . . 5  |-  ( x  e.  ( -u 1 (,) 1 )  ->  E. y  e.  ( 0 (,) pi ) ( cos `  y
)  =  x )
61 eqcom 2141 . . . . . . 7  |-  ( x  =  ( ( cos  |`  ( 0 (,) pi ) ) `  y
)  <->  ( ( cos  |`  ( 0 (,) pi ) ) `  y
)  =  x )
6215eqeq1d 2148 . . . . . . 7  |-  ( y  e.  ( 0 (,) pi )  ->  (
( ( cos  |`  (
0 (,) pi ) ) `  y )  =  x  <->  ( cos `  y )  =  x ) )
6361, 62syl5bb 191 . . . . . 6  |-  ( y  e.  ( 0 (,) pi )  ->  (
x  =  ( ( cos  |`  ( 0 (,) pi ) ) `
 y )  <->  ( cos `  y )  =  x ) )
6463rexbiia 2450 . . . . 5  |-  ( E. y  e.  ( 0 (,) pi ) x  =  ( ( cos  |`  ( 0 (,) pi ) ) `  y
)  <->  E. y  e.  ( 0 (,) pi ) ( cos `  y
)  =  x )
6560, 64sylibr 133 . . . 4  |-  ( x  e.  ( -u 1 (,) 1 )  ->  E. y  e.  ( 0 (,) pi ) x  =  (
( cos  |`  ( 0 (,) pi ) ) `
 y ) )
6665rgen 2485 . . 3  |-  A. x  e.  ( -u 1 (,) 1 ) E. y  e.  ( 0 (,) pi ) x  =  (
( cos  |`  ( 0 (,) pi ) ) `
 y )
67 dffo3 5567 . . 3  |-  ( ( cos  |`  ( 0 (,) pi ) ) : ( 0 (,) pi ) -onto-> ( -u
1 (,) 1 )  <-> 
( ( cos  |`  (
0 (,) pi ) ) : ( 0 (,) pi ) --> (
-u 1 (,) 1
)  /\  A. x  e.  ( -u 1 (,) 1 ) E. y  e.  ( 0 (,) pi ) x  =  (
( cos  |`  ( 0 (,) pi ) ) `
 y ) ) )
6814, 66, 67mpbir2an 926 . 2  |-  ( cos  |`  ( 0 (,) pi ) ) : ( 0 (,) pi )
-onto-> ( -u 1 (,) 1 )
69 df-f1o 5130 . 2  |-  ( ( cos  |`  ( 0 (,) pi ) ) : ( 0 (,) pi ) -1-1-onto-> ( -u 1 (,) 1 )  <->  ( ( cos  |`  ( 0 (,) pi ) ) : ( 0 (,) pi ) -1-1-> ( -u 1 (,) 1 )  /\  ( cos  |`  ( 0 (,) pi ) ) : ( 0 (,) pi ) -onto-> ( -u 1 (,) 1 ) ) )
7026, 68, 69mpbir2an 926 1  |-  ( cos  |`  ( 0 (,) pi ) ) : ( 0 (,) pi ) -1-1-onto-> (
-u 1 (,) 1
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 962    = wceq 1331    e. wcel 1480   A.wral 2416   E.wrex 2417    C_ wss 3071   class class class wbr 3929    |` cres 4541    Fn wfn 5118   -->wf 5119   -1-1->wf1 5120   -onto->wfo 5121   -1-1-onto->wf1o 5122   ` cfv 5123  (class class class)co 5774   CCcc 7630   RRcr 7631   0cc0 7632   1c1 7633   RR*cxr 7811    < clt 7812   -ucneg 7946   (,)cioo 9683   [,]cicc 9686   cosccos 11363   picpi 11365   -cn->ccncf 12740
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7723  ax-resscn 7724  ax-1cn 7725  ax-1re 7726  ax-icn 7727  ax-addcl 7728  ax-addrcl 7729  ax-mulcl 7730  ax-mulrcl 7731  ax-addcom 7732  ax-mulcom 7733  ax-addass 7734  ax-mulass 7735  ax-distr 7736  ax-i2m1 7737  ax-0lt1 7738  ax-1rid 7739  ax-0id 7740  ax-rnegex 7741  ax-precex 7742  ax-cnre 7743  ax-pre-ltirr 7744  ax-pre-ltwlin 7745  ax-pre-lttrn 7746  ax-pre-apti 7747  ax-pre-ltadd 7748  ax-pre-mulgt0 7749  ax-pre-mulext 7750  ax-arch 7751  ax-caucvg 7752  ax-pre-suploc 7753  ax-addf 7754  ax-mulf 7755
This theorem depends on definitions:  df-bi 116  df-stab 816  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-disj 3907  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-isom 5132  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-of 5982  df-1st 6038  df-2nd 6039  df-recs 6202  df-irdg 6267  df-frec 6288  df-1o 6313  df-oadd 6317  df-er 6429  df-map 6544  df-pm 6545  df-en 6635  df-dom 6636  df-fin 6637  df-sup 6871  df-inf 6872  df-pnf 7814  df-mnf 7815  df-xr 7816  df-ltxr 7817  df-le 7818  df-sub 7947  df-neg 7948  df-reap 8349  df-ap 8356  df-div 8445  df-inn 8733  df-2 8791  df-3 8792  df-4 8793  df-5 8794  df-6 8795  df-7 8796  df-8 8797  df-9 8798  df-n0 8990  df-z 9067  df-uz 9339  df-q 9424  df-rp 9454  df-xneg 9571  df-xadd 9572  df-ioo 9687  df-ioc 9688  df-ico 9689  df-icc 9690  df-fz 9803  df-fzo 9932  df-seqfrec 10231  df-exp 10305  df-fac 10484  df-bc 10506  df-ihash 10534  df-shft 10599  df-cj 10626  df-re 10627  df-im 10628  df-rsqrt 10782  df-abs 10783  df-clim 11060  df-sumdc 11135  df-ef 11366  df-sin 11368  df-cos 11369  df-pi 11371  df-rest 12136  df-topgen 12155  df-psmet 12170  df-xmet 12171  df-met 12172  df-bl 12173  df-mopn 12174  df-top 12179  df-topon 12192  df-bases 12224  df-ntr 12279  df-cn 12371  df-cnp 12372  df-tx 12436  df-cncf 12741  df-limced 12808  df-dvap 12809
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator