| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ioocosf1o | Unicode version | ||
| Description: The cosine function is a bijection when restricted to its principal domain. (Contributed by Mario Carneiro, 12-May-2014.) (Revised by Jim Kingdon, 7-May-2024.) |
| Ref | Expression |
|---|---|
| ioocosf1o |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cosf 12091 |
. . . . . 6
| |
| 2 | ffn 5435 |
. . . . . 6
| |
| 3 | 1, 2 | ax-mp 5 |
. . . . 5
|
| 4 | ioossre 10077 |
. . . . . 6
| |
| 5 | ax-resscn 8037 |
. . . . . 6
| |
| 6 | 4, 5 | sstri 3206 |
. . . . 5
|
| 7 | fnssres 5398 |
. . . . 5
| |
| 8 | 3, 6, 7 | mp2an 426 |
. . . 4
|
| 9 | fvres 5613 |
. . . . . 6
| |
| 10 | cos0pilt1 15399 |
. . . . . 6
| |
| 11 | 9, 10 | eqeltrd 2283 |
. . . . 5
|
| 12 | 11 | rgen 2560 |
. . . 4
|
| 13 | ffnfv 5751 |
. . . 4
| |
| 14 | 8, 12, 13 | mpbir2an 945 |
. . 3
|
| 15 | fvres 5613 |
. . . . . 6
| |
| 16 | 9, 15 | eqeqan12d 2222 |
. . . . 5
|
| 17 | ioossicc 10101 |
. . . . . . 7
| |
| 18 | 17 | sseli 3193 |
. . . . . 6
|
| 19 | 17 | sseli 3193 |
. . . . . 6
|
| 20 | cos11 15400 |
. . . . . . 7
| |
| 21 | 20 | biimprd 158 |
. . . . . 6
|
| 22 | 18, 19, 21 | syl2an 289 |
. . . . 5
|
| 23 | 16, 22 | sylbid 150 |
. . . 4
|
| 24 | 23 | rgen2 2593 |
. . 3
|
| 25 | dff13 5850 |
. . 3
| |
| 26 | 14, 24, 25 | mpbir2an 945 |
. 2
|
| 27 | 0red 8093 |
. . . . . 6
| |
| 28 | pire 15333 |
. . . . . . 7
| |
| 29 | 28 | a1i 9 |
. . . . . 6
|
| 30 | elioore 10054 |
. . . . . 6
| |
| 31 | pipos 15335 |
. . . . . . 7
| |
| 32 | 31 | a1i 9 |
. . . . . 6
|
| 33 | 0re 8092 |
. . . . . . . . 9
| |
| 34 | iccssre 10097 |
. . . . . . . . 9
| |
| 35 | 33, 28, 34 | mp2an 426 |
. . . . . . . 8
|
| 36 | 35, 5 | sstri 3206 |
. . . . . . 7
|
| 37 | 36 | a1i 9 |
. . . . . 6
|
| 38 | coscn 15317 |
. . . . . . 7
| |
| 39 | 38 | a1i 9 |
. . . . . 6
|
| 40 | 35 | sseli 3193 |
. . . . . . . 8
|
| 41 | 40 | recoscld 12110 |
. . . . . . 7
|
| 42 | 41 | adantl 277 |
. . . . . 6
|
| 43 | cospi 15347 |
. . . . . . . 8
| |
| 44 | neg1rr 9162 |
. . . . . . . . . . 11
| |
| 45 | 44 | rexri 8150 |
. . . . . . . . . 10
|
| 46 | 1re 8091 |
. . . . . . . . . . 11
| |
| 47 | 46 | rexri 8150 |
. . . . . . . . . 10
|
| 48 | elioo2 10063 |
. . . . . . . . . 10
| |
| 49 | 45, 47, 48 | mp2an 426 |
. . . . . . . . 9
|
| 50 | 49 | simp2bi 1016 |
. . . . . . . 8
|
| 51 | 43, 50 | eqbrtrid 4086 |
. . . . . . 7
|
| 52 | 49 | simp3bi 1017 |
. . . . . . . 8
|
| 53 | cos0 12116 |
. . . . . . . 8
| |
| 54 | 52, 53 | breqtrrdi 4093 |
. . . . . . 7
|
| 55 | 51, 54 | jca 306 |
. . . . . 6
|
| 56 | simplr 528 |
. . . . . . 7
| |
| 57 | simprl 529 |
. . . . . . 7
| |
| 58 | simprr 531 |
. . . . . . 7
| |
| 59 | 56, 57, 58 | cosordlem 15396 |
. . . . . 6
|
| 60 | 27, 29, 30, 32, 37, 39, 42, 55, 59 | ivthdec 15191 |
. . . . 5
|
| 61 | eqcom 2208 |
. . . . . . 7
| |
| 62 | 15 | eqeq1d 2215 |
. . . . . . 7
|
| 63 | 61, 62 | bitrid 192 |
. . . . . 6
|
| 64 | 63 | rexbiia 2522 |
. . . . 5
|
| 65 | 60, 64 | sylibr 134 |
. . . 4
|
| 66 | 65 | rgen 2560 |
. . 3
|
| 67 | dffo3 5740 |
. . 3
| |
| 68 | 14, 66, 67 | mpbir2an 945 |
. 2
|
| 69 | df-f1o 5287 |
. 2
| |
| 70 | 26, 68, 69 | mpbir2an 945 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4167 ax-sep 4170 ax-nul 4178 ax-pow 4226 ax-pr 4261 ax-un 4488 ax-setind 4593 ax-iinf 4644 ax-cnex 8036 ax-resscn 8037 ax-1cn 8038 ax-1re 8039 ax-icn 8040 ax-addcl 8041 ax-addrcl 8042 ax-mulcl 8043 ax-mulrcl 8044 ax-addcom 8045 ax-mulcom 8046 ax-addass 8047 ax-mulass 8048 ax-distr 8049 ax-i2m1 8050 ax-0lt1 8051 ax-1rid 8052 ax-0id 8053 ax-rnegex 8054 ax-precex 8055 ax-cnre 8056 ax-pre-ltirr 8057 ax-pre-ltwlin 8058 ax-pre-lttrn 8059 ax-pre-apti 8060 ax-pre-ltadd 8061 ax-pre-mulgt0 8062 ax-pre-mulext 8063 ax-arch 8064 ax-caucvg 8065 ax-pre-suploc 8066 ax-addf 8067 ax-mulf 8068 |
| This theorem depends on definitions: df-bi 117 df-stab 833 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-if 3576 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-int 3892 df-iun 3935 df-disj 4028 df-br 4052 df-opab 4114 df-mpt 4115 df-tr 4151 df-id 4348 df-po 4351 df-iso 4352 df-iord 4421 df-on 4423 df-ilim 4424 df-suc 4426 df-iom 4647 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-rn 4694 df-res 4695 df-ima 4696 df-iota 5241 df-fun 5282 df-fn 5283 df-f 5284 df-f1 5285 df-fo 5286 df-f1o 5287 df-fv 5288 df-isom 5289 df-riota 5912 df-ov 5960 df-oprab 5961 df-mpo 5962 df-of 6171 df-1st 6239 df-2nd 6240 df-recs 6404 df-irdg 6469 df-frec 6490 df-1o 6515 df-oadd 6519 df-er 6633 df-map 6750 df-pm 6751 df-en 6841 df-dom 6842 df-fin 6843 df-sup 7101 df-inf 7102 df-pnf 8129 df-mnf 8130 df-xr 8131 df-ltxr 8132 df-le 8133 df-sub 8265 df-neg 8266 df-reap 8668 df-ap 8675 df-div 8766 df-inn 9057 df-2 9115 df-3 9116 df-4 9117 df-5 9118 df-6 9119 df-7 9120 df-8 9121 df-9 9122 df-n0 9316 df-z 9393 df-uz 9669 df-q 9761 df-rp 9796 df-xneg 9914 df-xadd 9915 df-ioo 10034 df-ioc 10035 df-ico 10036 df-icc 10037 df-fz 10151 df-fzo 10285 df-seqfrec 10615 df-exp 10706 df-fac 10893 df-bc 10915 df-ihash 10943 df-shft 11201 df-cj 11228 df-re 11229 df-im 11230 df-rsqrt 11384 df-abs 11385 df-clim 11665 df-sumdc 11740 df-ef 12034 df-sin 12036 df-cos 12037 df-pi 12039 df-rest 13148 df-topgen 13167 df-psmet 14380 df-xmet 14381 df-met 14382 df-bl 14383 df-mopn 14384 df-top 14545 df-topon 14558 df-bases 14590 df-ntr 14643 df-cn 14735 df-cnp 14736 df-tx 14800 df-cncf 15118 df-limced 15203 df-dvap 15204 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |