Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ioocosf1o | Unicode version |
Description: The cosine function is a bijection when restricted to its principal domain. (Contributed by Mario Carneiro, 12-May-2014.) (Revised by Jim Kingdon, 7-May-2024.) |
Ref | Expression |
---|---|
ioocosf1o |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cosf 11655 | . . . . . 6 | |
2 | ffn 5345 | . . . . . 6 | |
3 | 1, 2 | ax-mp 5 | . . . . 5 |
4 | ioossre 9879 | . . . . . 6 | |
5 | ax-resscn 7853 | . . . . . 6 | |
6 | 4, 5 | sstri 3156 | . . . . 5 |
7 | fnssres 5309 | . . . . 5 | |
8 | 3, 6, 7 | mp2an 424 | . . . 4 |
9 | fvres 5518 | . . . . . 6 | |
10 | cos0pilt1 13488 | . . . . . 6 | |
11 | 9, 10 | eqeltrd 2247 | . . . . 5 |
12 | 11 | rgen 2523 | . . . 4 |
13 | ffnfv 5651 | . . . 4 | |
14 | 8, 12, 13 | mpbir2an 937 | . . 3 |
15 | fvres 5518 | . . . . . 6 | |
16 | 9, 15 | eqeqan12d 2186 | . . . . 5 |
17 | ioossicc 9903 | . . . . . . 7 | |
18 | 17 | sseli 3143 | . . . . . 6 |
19 | 17 | sseli 3143 | . . . . . 6 |
20 | cos11 13489 | . . . . . . 7 | |
21 | 20 | biimprd 157 | . . . . . 6 |
22 | 18, 19, 21 | syl2an 287 | . . . . 5 |
23 | 16, 22 | sylbid 149 | . . . 4 |
24 | 23 | rgen2 2556 | . . 3 |
25 | dff13 5744 | . . 3 | |
26 | 14, 24, 25 | mpbir2an 937 | . 2 |
27 | 0red 7908 | . . . . . 6 | |
28 | pire 13422 | . . . . . . 7 | |
29 | 28 | a1i 9 | . . . . . 6 |
30 | elioore 9856 | . . . . . 6 | |
31 | pipos 13424 | . . . . . . 7 | |
32 | 31 | a1i 9 | . . . . . 6 |
33 | 0re 7907 | . . . . . . . . 9 | |
34 | iccssre 9899 | . . . . . . . . 9 | |
35 | 33, 28, 34 | mp2an 424 | . . . . . . . 8 |
36 | 35, 5 | sstri 3156 | . . . . . . 7 |
37 | 36 | a1i 9 | . . . . . 6 |
38 | coscn 13406 | . . . . . . 7 | |
39 | 38 | a1i 9 | . . . . . 6 |
40 | 35 | sseli 3143 | . . . . . . . 8 |
41 | 40 | recoscld 11674 | . . . . . . 7 |
42 | 41 | adantl 275 | . . . . . 6 |
43 | cospi 13436 | . . . . . . . 8 | |
44 | neg1rr 8971 | . . . . . . . . . . 11 | |
45 | 44 | rexri 7964 | . . . . . . . . . 10 |
46 | 1re 7906 | . . . . . . . . . . 11 | |
47 | 46 | rexri 7964 | . . . . . . . . . 10 |
48 | elioo2 9865 | . . . . . . . . . 10 | |
49 | 45, 47, 48 | mp2an 424 | . . . . . . . . 9 |
50 | 49 | simp2bi 1008 | . . . . . . . 8 |
51 | 43, 50 | eqbrtrid 4022 | . . . . . . 7 |
52 | 49 | simp3bi 1009 | . . . . . . . 8 |
53 | cos0 11680 | . . . . . . . 8 | |
54 | 52, 53 | breqtrrdi 4029 | . . . . . . 7 |
55 | 51, 54 | jca 304 | . . . . . 6 |
56 | simplr 525 | . . . . . . 7 | |
57 | simprl 526 | . . . . . . 7 | |
58 | simprr 527 | . . . . . . 7 | |
59 | 56, 57, 58 | cosordlem 13485 | . . . . . 6 |
60 | 27, 29, 30, 32, 37, 39, 42, 55, 59 | ivthdec 13337 | . . . . 5 |
61 | eqcom 2172 | . . . . . . 7 | |
62 | 15 | eqeq1d 2179 | . . . . . . 7 |
63 | 61, 62 | syl5bb 191 | . . . . . 6 |
64 | 63 | rexbiia 2485 | . . . . 5 |
65 | 60, 64 | sylibr 133 | . . . 4 |
66 | 65 | rgen 2523 | . . 3 |
67 | dffo3 5640 | . . 3 | |
68 | 14, 66, 67 | mpbir2an 937 | . 2 |
69 | df-f1o 5203 | . 2 | |
70 | 26, 68, 69 | mpbir2an 937 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 w3a 973 wceq 1348 wcel 2141 wral 2448 wrex 2449 wss 3121 class class class wbr 3987 cres 4611 wfn 5191 wf 5192 wf1 5193 wfo 5194 wf1o 5195 cfv 5196 (class class class)co 5850 cc 7759 cr 7760 cc0 7761 c1 7762 cxr 7940 clt 7941 cneg 8078 cioo 9832 cicc 9835 ccos 11595 cpi 11597 ccncf 13272 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4102 ax-sep 4105 ax-nul 4113 ax-pow 4158 ax-pr 4192 ax-un 4416 ax-setind 4519 ax-iinf 4570 ax-cnex 7852 ax-resscn 7853 ax-1cn 7854 ax-1re 7855 ax-icn 7856 ax-addcl 7857 ax-addrcl 7858 ax-mulcl 7859 ax-mulrcl 7860 ax-addcom 7861 ax-mulcom 7862 ax-addass 7863 ax-mulass 7864 ax-distr 7865 ax-i2m1 7866 ax-0lt1 7867 ax-1rid 7868 ax-0id 7869 ax-rnegex 7870 ax-precex 7871 ax-cnre 7872 ax-pre-ltirr 7873 ax-pre-ltwlin 7874 ax-pre-lttrn 7875 ax-pre-apti 7876 ax-pre-ltadd 7877 ax-pre-mulgt0 7878 ax-pre-mulext 7879 ax-arch 7880 ax-caucvg 7881 ax-pre-suploc 7882 ax-addf 7883 ax-mulf 7884 |
This theorem depends on definitions: df-bi 116 df-stab 826 df-dc 830 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rmo 2456 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-if 3526 df-pw 3566 df-sn 3587 df-pr 3588 df-op 3590 df-uni 3795 df-int 3830 df-iun 3873 df-disj 3965 df-br 3988 df-opab 4049 df-mpt 4050 df-tr 4086 df-id 4276 df-po 4279 df-iso 4280 df-iord 4349 df-on 4351 df-ilim 4352 df-suc 4354 df-iom 4573 df-xp 4615 df-rel 4616 df-cnv 4617 df-co 4618 df-dm 4619 df-rn 4620 df-res 4621 df-ima 4622 df-iota 5158 df-fun 5198 df-fn 5199 df-f 5200 df-f1 5201 df-fo 5202 df-f1o 5203 df-fv 5204 df-isom 5205 df-riota 5806 df-ov 5853 df-oprab 5854 df-mpo 5855 df-of 6058 df-1st 6116 df-2nd 6117 df-recs 6281 df-irdg 6346 df-frec 6367 df-1o 6392 df-oadd 6396 df-er 6509 df-map 6624 df-pm 6625 df-en 6715 df-dom 6716 df-fin 6717 df-sup 6957 df-inf 6958 df-pnf 7943 df-mnf 7944 df-xr 7945 df-ltxr 7946 df-le 7947 df-sub 8079 df-neg 8080 df-reap 8481 df-ap 8488 df-div 8577 df-inn 8866 df-2 8924 df-3 8925 df-4 8926 df-5 8927 df-6 8928 df-7 8929 df-8 8930 df-9 8931 df-n0 9123 df-z 9200 df-uz 9475 df-q 9566 df-rp 9598 df-xneg 9716 df-xadd 9717 df-ioo 9836 df-ioc 9837 df-ico 9838 df-icc 9839 df-fz 9953 df-fzo 10086 df-seqfrec 10389 df-exp 10463 df-fac 10647 df-bc 10669 df-ihash 10697 df-shft 10766 df-cj 10793 df-re 10794 df-im 10795 df-rsqrt 10949 df-abs 10950 df-clim 11229 df-sumdc 11304 df-ef 11598 df-sin 11600 df-cos 11601 df-pi 11603 df-rest 12567 df-topgen 12586 df-psmet 12702 df-xmet 12703 df-met 12704 df-bl 12705 df-mopn 12706 df-top 12711 df-topon 12724 df-bases 12756 df-ntr 12811 df-cn 12903 df-cnp 12904 df-tx 12968 df-cncf 13273 df-limced 13340 df-dvap 13341 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |