ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reeff1o Unicode version

Theorem reeff1o 14949
Description: The real exponential function is one-to-one onto. (Contributed by Paul Chapman, 18-Oct-2007.) (Revised by Mario Carneiro, 10-Nov-2013.)
Assertion
Ref Expression
reeff1o  |-  ( exp  |`  RR ) : RR -1-1-onto-> RR+

Proof of Theorem reeff1o
Dummy variables  x  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reeff1 11846 . 2  |-  ( exp  |`  RR ) : RR -1-1-> RR+
2 f1f 5460 . . . 4  |-  ( ( exp  |`  RR ) : RR -1-1-> RR+  ->  ( exp  |`  RR ) : RR --> RR+ )
3 ffn 5404 . . . 4  |-  ( ( exp  |`  RR ) : RR --> RR+  ->  ( exp  |`  RR )  Fn  RR )
41, 2, 3mp2b 8 . . 3  |-  ( exp  |`  RR )  Fn  RR
5 frn 5413 . . . . 5  |-  ( ( exp  |`  RR ) : RR --> RR+  ->  ran  ( exp  |`  RR )  C_  RR+ )
61, 2, 5mp2b 8 . . . 4  |-  ran  ( exp  |`  RR )  C_  RR+
7 rpre 9729 . . . . . . . . 9  |-  ( z  e.  RR+  ->  z  e.  RR )
8 reeff1olem 14947 . . . . . . . . 9  |-  ( ( z  e.  RR  /\  1  <  z )  ->  E. x  e.  RR  ( exp `  x )  =  z )
97, 8sylan 283 . . . . . . . 8  |-  ( ( z  e.  RR+  /\  1  <  z )  ->  E. x  e.  RR  ( exp `  x
)  =  z )
107adantr 276 . . . . . . . . 9  |-  ( ( z  e.  RR+  /\  z  <  _e )  ->  z  e.  RR )
11 rpgt0 9734 . . . . . . . . . 10  |-  ( z  e.  RR+  ->  0  < 
z )
1211adantr 276 . . . . . . . . 9  |-  ( ( z  e.  RR+  /\  z  <  _e )  ->  0  <  z )
13 simpr 110 . . . . . . . . 9  |-  ( ( z  e.  RR+  /\  z  <  _e )  ->  z  <  _e )
14 0xr 8068 . . . . . . . . . . 11  |-  0  e.  RR*
15 ere 11816 . . . . . . . . . . . 12  |-  _e  e.  RR
1615rexri 8079 . . . . . . . . . . 11  |-  _e  e.  RR*
17 elioo2 9990 . . . . . . . . . . 11  |-  ( ( 0  e.  RR*  /\  _e  e.  RR* )  ->  (
z  e.  ( 0 (,) _e )  <->  ( z  e.  RR  /\  0  < 
z  /\  z  <  _e ) ) )
1814, 16, 17mp2an 426 . . . . . . . . . 10  |-  ( z  e.  ( 0 (,) _e )  <->  ( z  e.  RR  /\  0  < 
z  /\  z  <  _e ) )
19 reeff1oleme 14948 . . . . . . . . . 10  |-  ( z  e.  ( 0 (,) _e )  ->  E. x  e.  RR  ( exp `  x
)  =  z )
2018, 19sylbir 135 . . . . . . . . 9  |-  ( ( z  e.  RR  /\  0  <  z  /\  z  <  _e )  ->  E. x  e.  RR  ( exp `  x
)  =  z )
2110, 12, 13, 20syl3anc 1249 . . . . . . . 8  |-  ( ( z  e.  RR+  /\  z  <  _e )  ->  E. x  e.  RR  ( exp `  x
)  =  z )
22 1lt2 9154 . . . . . . . . . 10  |-  1  <  2
23 egt2lt3 11926 . . . . . . . . . . 11  |-  ( 2  <  _e  /\  _e  <  3 )
2423simpli 111 . . . . . . . . . 10  |-  2  <  _e
25 1re 8020 . . . . . . . . . . 11  |-  1  e.  RR
26 2re 9054 . . . . . . . . . . 11  |-  2  e.  RR
2725, 26, 15lttri 8126 . . . . . . . . . 10  |-  ( ( 1  <  2  /\  2  <  _e )  ->  1  <  _e )
2822, 24, 27mp2an 426 . . . . . . . . 9  |-  1  <  _e
29 1red 8036 . . . . . . . . . 10  |-  ( z  e.  RR+  ->  1  e.  RR )
3015a1i 9 . . . . . . . . . 10  |-  ( z  e.  RR+  ->  _e  e.  RR )
31 axltwlin 8089 . . . . . . . . . 10  |-  ( ( 1  e.  RR  /\  _e  e.  RR  /\  z  e.  RR )  ->  (
1  <  _e  ->  ( 1  <  z  \/  z  <  _e ) ) )
3229, 30, 7, 31syl3anc 1249 . . . . . . . . 9  |-  ( z  e.  RR+  ->  ( 1  <  _e  ->  (
1  <  z  \/  z  <  _e ) ) )
3328, 32mpi 15 . . . . . . . 8  |-  ( z  e.  RR+  ->  ( 1  <  z  \/  z  <  _e ) )
349, 21, 33mpjaodan 799 . . . . . . 7  |-  ( z  e.  RR+  ->  E. x  e.  RR  ( exp `  x
)  =  z )
35 fvres 5579 . . . . . . . . 9  |-  ( x  e.  RR  ->  (
( exp  |`  RR ) `
 x )  =  ( exp `  x
) )
3635eqeq1d 2202 . . . . . . . 8  |-  ( x  e.  RR  ->  (
( ( exp  |`  RR ) `
 x )  =  z  <->  ( exp `  x
)  =  z ) )
3736rexbiia 2509 . . . . . . 7  |-  ( E. x  e.  RR  (
( exp  |`  RR ) `
 x )  =  z  <->  E. x  e.  RR  ( exp `  x )  =  z )
3834, 37sylibr 134 . . . . . 6  |-  ( z  e.  RR+  ->  E. x  e.  RR  ( ( exp  |`  RR ) `  x
)  =  z )
39 fvelrnb 5605 . . . . . . 7  |-  ( ( exp  |`  RR )  Fn  RR  ->  ( z  e.  ran  ( exp  |`  RR )  <->  E. x  e.  RR  ( ( exp  |`  RR ) `
 x )  =  z ) )
404, 39ax-mp 5 . . . . . 6  |-  ( z  e.  ran  ( exp  |`  RR )  <->  E. x  e.  RR  ( ( exp  |`  RR ) `  x
)  =  z )
4138, 40sylibr 134 . . . . 5  |-  ( z  e.  RR+  ->  z  e. 
ran  ( exp  |`  RR ) )
4241ssriv 3184 . . . 4  |-  RR+  C_  ran  ( exp  |`  RR )
436, 42eqssi 3196 . . 3  |-  ran  ( exp  |`  RR )  = 
RR+
44 df-fo 5261 . . 3  |-  ( ( exp  |`  RR ) : RR -onto-> RR+  <->  ( ( exp  |`  RR )  Fn  RR  /\ 
ran  ( exp  |`  RR )  =  RR+ ) )
454, 43, 44mpbir2an 944 . 2  |-  ( exp  |`  RR ) : RR -onto-> RR+
46 df-f1o 5262 . 2  |-  ( ( exp  |`  RR ) : RR -1-1-onto-> RR+  <->  ( ( exp  |`  RR ) : RR -1-1-> RR+ 
/\  ( exp  |`  RR ) : RR -onto-> RR+ )
)
471, 45, 46mpbir2an 944 1  |-  ( exp  |`  RR ) : RR -1-1-onto-> RR+
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709    /\ w3a 980    = wceq 1364    e. wcel 2164   E.wrex 2473    C_ wss 3154   class class class wbr 4030   ran crn 4661    |` cres 4662    Fn wfn 5250   -->wf 5251   -1-1->wf1 5252   -onto->wfo 5253   -1-1-onto->wf1o 5254   ` cfv 5255  (class class class)co 5919   RRcr 7873   0cc0 7874   1c1 7875   RR*cxr 8055    < clt 8056   2c2 9035   3c3 9036   RR+crp 9722   (,)cioo 9957   expce 11788   _eceu 11789
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-iinf 4621  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-mulrcl 7973  ax-addcom 7974  ax-mulcom 7975  ax-addass 7976  ax-mulass 7977  ax-distr 7978  ax-i2m1 7979  ax-0lt1 7980  ax-1rid 7981  ax-0id 7982  ax-rnegex 7983  ax-precex 7984  ax-cnre 7985  ax-pre-ltirr 7986  ax-pre-ltwlin 7987  ax-pre-lttrn 7988  ax-pre-apti 7989  ax-pre-ltadd 7990  ax-pre-mulgt0 7991  ax-pre-mulext 7992  ax-arch 7993  ax-caucvg 7994  ax-pre-suploc 7995  ax-addf 7996  ax-mulf 7997
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-if 3559  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-disj 4008  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-id 4325  df-po 4328  df-iso 4329  df-iord 4398  df-on 4400  df-ilim 4401  df-suc 4403  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-of 6132  df-1st 6195  df-2nd 6196  df-recs 6360  df-irdg 6425  df-frec 6446  df-1o 6471  df-oadd 6475  df-er 6589  df-map 6706  df-pm 6707  df-en 6797  df-dom 6798  df-fin 6799  df-sup 7045  df-inf 7046  df-pnf 8058  df-mnf 8059  df-xr 8060  df-ltxr 8061  df-le 8062  df-sub 8194  df-neg 8195  df-reap 8596  df-ap 8603  df-div 8694  df-inn 8985  df-2 9043  df-3 9044  df-4 9045  df-n0 9244  df-z 9321  df-uz 9596  df-q 9688  df-rp 9723  df-xneg 9841  df-xadd 9842  df-ioo 9961  df-ico 9963  df-icc 9964  df-fz 10078  df-fzo 10212  df-seqfrec 10522  df-exp 10613  df-fac 10800  df-bc 10822  df-ihash 10850  df-shft 10962  df-cj 10989  df-re 10990  df-im 10991  df-rsqrt 11145  df-abs 11146  df-clim 11425  df-sumdc 11500  df-ef 11794  df-e 11795  df-rest 12855  df-topgen 12874  df-psmet 14042  df-xmet 14043  df-met 14044  df-bl 14045  df-mopn 14046  df-top 14177  df-topon 14190  df-bases 14222  df-ntr 14275  df-cn 14367  df-cnp 14368  df-tx 14432  df-cncf 14750  df-limced 14835  df-dvap 14836
This theorem is referenced by:  reefiso  14953  dfrelog  15036  relogf1o  15037  reeflog  15039
  Copyright terms: Public domain W3C validator