ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reeff1o Unicode version

Theorem reeff1o 13488
Description: The real exponential function is one-to-one onto. (Contributed by Paul Chapman, 18-Oct-2007.) (Revised by Mario Carneiro, 10-Nov-2013.)
Assertion
Ref Expression
reeff1o  |-  ( exp  |`  RR ) : RR -1-1-onto-> RR+

Proof of Theorem reeff1o
Dummy variables  x  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reeff1 11663 . 2  |-  ( exp  |`  RR ) : RR -1-1-> RR+
2 f1f 5403 . . . 4  |-  ( ( exp  |`  RR ) : RR -1-1-> RR+  ->  ( exp  |`  RR ) : RR --> RR+ )
3 ffn 5347 . . . 4  |-  ( ( exp  |`  RR ) : RR --> RR+  ->  ( exp  |`  RR )  Fn  RR )
41, 2, 3mp2b 8 . . 3  |-  ( exp  |`  RR )  Fn  RR
5 frn 5356 . . . . 5  |-  ( ( exp  |`  RR ) : RR --> RR+  ->  ran  ( exp  |`  RR )  C_  RR+ )
61, 2, 5mp2b 8 . . . 4  |-  ran  ( exp  |`  RR )  C_  RR+
7 rpre 9617 . . . . . . . . 9  |-  ( z  e.  RR+  ->  z  e.  RR )
8 reeff1olem 13486 . . . . . . . . 9  |-  ( ( z  e.  RR  /\  1  <  z )  ->  E. x  e.  RR  ( exp `  x )  =  z )
97, 8sylan 281 . . . . . . . 8  |-  ( ( z  e.  RR+  /\  1  <  z )  ->  E. x  e.  RR  ( exp `  x
)  =  z )
107adantr 274 . . . . . . . . 9  |-  ( ( z  e.  RR+  /\  z  <  _e )  ->  z  e.  RR )
11 rpgt0 9622 . . . . . . . . . 10  |-  ( z  e.  RR+  ->  0  < 
z )
1211adantr 274 . . . . . . . . 9  |-  ( ( z  e.  RR+  /\  z  <  _e )  ->  0  <  z )
13 simpr 109 . . . . . . . . 9  |-  ( ( z  e.  RR+  /\  z  <  _e )  ->  z  <  _e )
14 0xr 7966 . . . . . . . . . . 11  |-  0  e.  RR*
15 ere 11633 . . . . . . . . . . . 12  |-  _e  e.  RR
1615rexri 7977 . . . . . . . . . . 11  |-  _e  e.  RR*
17 elioo2 9878 . . . . . . . . . . 11  |-  ( ( 0  e.  RR*  /\  _e  e.  RR* )  ->  (
z  e.  ( 0 (,) _e )  <->  ( z  e.  RR  /\  0  < 
z  /\  z  <  _e ) ) )
1814, 16, 17mp2an 424 . . . . . . . . . 10  |-  ( z  e.  ( 0 (,) _e )  <->  ( z  e.  RR  /\  0  < 
z  /\  z  <  _e ) )
19 reeff1oleme 13487 . . . . . . . . . 10  |-  ( z  e.  ( 0 (,) _e )  ->  E. x  e.  RR  ( exp `  x
)  =  z )
2018, 19sylbir 134 . . . . . . . . 9  |-  ( ( z  e.  RR  /\  0  <  z  /\  z  <  _e )  ->  E. x  e.  RR  ( exp `  x
)  =  z )
2110, 12, 13, 20syl3anc 1233 . . . . . . . 8  |-  ( ( z  e.  RR+  /\  z  <  _e )  ->  E. x  e.  RR  ( exp `  x
)  =  z )
22 1lt2 9047 . . . . . . . . . 10  |-  1  <  2
23 egt2lt3 11742 . . . . . . . . . . 11  |-  ( 2  <  _e  /\  _e  <  3 )
2423simpli 110 . . . . . . . . . 10  |-  2  <  _e
25 1re 7919 . . . . . . . . . . 11  |-  1  e.  RR
26 2re 8948 . . . . . . . . . . 11  |-  2  e.  RR
2725, 26, 15lttri 8024 . . . . . . . . . 10  |-  ( ( 1  <  2  /\  2  <  _e )  ->  1  <  _e )
2822, 24, 27mp2an 424 . . . . . . . . 9  |-  1  <  _e
29 1red 7935 . . . . . . . . . 10  |-  ( z  e.  RR+  ->  1  e.  RR )
3015a1i 9 . . . . . . . . . 10  |-  ( z  e.  RR+  ->  _e  e.  RR )
31 axltwlin 7987 . . . . . . . . . 10  |-  ( ( 1  e.  RR  /\  _e  e.  RR  /\  z  e.  RR )  ->  (
1  <  _e  ->  ( 1  <  z  \/  z  <  _e ) ) )
3229, 30, 7, 31syl3anc 1233 . . . . . . . . 9  |-  ( z  e.  RR+  ->  ( 1  <  _e  ->  (
1  <  z  \/  z  <  _e ) ) )
3328, 32mpi 15 . . . . . . . 8  |-  ( z  e.  RR+  ->  ( 1  <  z  \/  z  <  _e ) )
349, 21, 33mpjaodan 793 . . . . . . 7  |-  ( z  e.  RR+  ->  E. x  e.  RR  ( exp `  x
)  =  z )
35 fvres 5520 . . . . . . . . 9  |-  ( x  e.  RR  ->  (
( exp  |`  RR ) `
 x )  =  ( exp `  x
) )
3635eqeq1d 2179 . . . . . . . 8  |-  ( x  e.  RR  ->  (
( ( exp  |`  RR ) `
 x )  =  z  <->  ( exp `  x
)  =  z ) )
3736rexbiia 2485 . . . . . . 7  |-  ( E. x  e.  RR  (
( exp  |`  RR ) `
 x )  =  z  <->  E. x  e.  RR  ( exp `  x )  =  z )
3834, 37sylibr 133 . . . . . 6  |-  ( z  e.  RR+  ->  E. x  e.  RR  ( ( exp  |`  RR ) `  x
)  =  z )
39 fvelrnb 5544 . . . . . . 7  |-  ( ( exp  |`  RR )  Fn  RR  ->  ( z  e.  ran  ( exp  |`  RR )  <->  E. x  e.  RR  ( ( exp  |`  RR ) `
 x )  =  z ) )
404, 39ax-mp 5 . . . . . 6  |-  ( z  e.  ran  ( exp  |`  RR )  <->  E. x  e.  RR  ( ( exp  |`  RR ) `  x
)  =  z )
4138, 40sylibr 133 . . . . 5  |-  ( z  e.  RR+  ->  z  e. 
ran  ( exp  |`  RR ) )
4241ssriv 3151 . . . 4  |-  RR+  C_  ran  ( exp  |`  RR )
436, 42eqssi 3163 . . 3  |-  ran  ( exp  |`  RR )  = 
RR+
44 df-fo 5204 . . 3  |-  ( ( exp  |`  RR ) : RR -onto-> RR+  <->  ( ( exp  |`  RR )  Fn  RR  /\ 
ran  ( exp  |`  RR )  =  RR+ ) )
454, 43, 44mpbir2an 937 . 2  |-  ( exp  |`  RR ) : RR -onto-> RR+
46 df-f1o 5205 . 2  |-  ( ( exp  |`  RR ) : RR -1-1-onto-> RR+  <->  ( ( exp  |`  RR ) : RR -1-1-> RR+ 
/\  ( exp  |`  RR ) : RR -onto-> RR+ )
)
471, 45, 46mpbir2an 937 1  |-  ( exp  |`  RR ) : RR -1-1-onto-> RR+
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 703    /\ w3a 973    = wceq 1348    e. wcel 2141   E.wrex 2449    C_ wss 3121   class class class wbr 3989   ran crn 4612    |` cres 4613    Fn wfn 5193   -->wf 5194   -1-1->wf1 5195   -onto->wfo 5196   -1-1-onto->wf1o 5197   ` cfv 5198  (class class class)co 5853   RRcr 7773   0cc0 7774   1c1 7775   RR*cxr 7953    < clt 7954   2c2 8929   3c3 8930   RR+crp 9610   (,)cioo 9845   expce 11605   _eceu 11606
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulrcl 7873  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-mulass 7877  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-1rid 7881  ax-0id 7882  ax-rnegex 7883  ax-precex 7884  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890  ax-pre-mulgt0 7891  ax-pre-mulext 7892  ax-arch 7893  ax-caucvg 7894  ax-pre-suploc 7895  ax-addf 7896  ax-mulf 7897
This theorem depends on definitions:  df-bi 116  df-stab 826  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-disj 3967  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-po 4281  df-iso 4282  df-iord 4351  df-on 4353  df-ilim 4354  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-isom 5207  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-of 6061  df-1st 6119  df-2nd 6120  df-recs 6284  df-irdg 6349  df-frec 6370  df-1o 6395  df-oadd 6399  df-er 6513  df-map 6628  df-pm 6629  df-en 6719  df-dom 6720  df-fin 6721  df-sup 6961  df-inf 6962  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-reap 8494  df-ap 8501  df-div 8590  df-inn 8879  df-2 8937  df-3 8938  df-4 8939  df-n0 9136  df-z 9213  df-uz 9488  df-q 9579  df-rp 9611  df-xneg 9729  df-xadd 9730  df-ioo 9849  df-ico 9851  df-icc 9852  df-fz 9966  df-fzo 10099  df-seqfrec 10402  df-exp 10476  df-fac 10660  df-bc 10682  df-ihash 10710  df-shft 10779  df-cj 10806  df-re 10807  df-im 10808  df-rsqrt 10962  df-abs 10963  df-clim 11242  df-sumdc 11317  df-ef 11611  df-e 11612  df-rest 12581  df-topgen 12600  df-psmet 12781  df-xmet 12782  df-met 12783  df-bl 12784  df-mopn 12785  df-top 12790  df-topon 12803  df-bases 12835  df-ntr 12890  df-cn 12982  df-cnp 12983  df-tx 13047  df-cncf 13352  df-limced 13419  df-dvap 13420
This theorem is referenced by:  reefiso  13492  dfrelog  13575  relogf1o  13576  reeflog  13578
  Copyright terms: Public domain W3C validator