ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reeff1o Unicode version

Theorem reeff1o 14547
Description: The real exponential function is one-to-one onto. (Contributed by Paul Chapman, 18-Oct-2007.) (Revised by Mario Carneiro, 10-Nov-2013.)
Assertion
Ref Expression
reeff1o  |-  ( exp  |`  RR ) : RR -1-1-onto-> RR+

Proof of Theorem reeff1o
Dummy variables  x  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reeff1 11722 . 2  |-  ( exp  |`  RR ) : RR -1-1-> RR+
2 f1f 5433 . . . 4  |-  ( ( exp  |`  RR ) : RR -1-1-> RR+  ->  ( exp  |`  RR ) : RR --> RR+ )
3 ffn 5377 . . . 4  |-  ( ( exp  |`  RR ) : RR --> RR+  ->  ( exp  |`  RR )  Fn  RR )
41, 2, 3mp2b 8 . . 3  |-  ( exp  |`  RR )  Fn  RR
5 frn 5386 . . . . 5  |-  ( ( exp  |`  RR ) : RR --> RR+  ->  ran  ( exp  |`  RR )  C_  RR+ )
61, 2, 5mp2b 8 . . . 4  |-  ran  ( exp  |`  RR )  C_  RR+
7 rpre 9674 . . . . . . . . 9  |-  ( z  e.  RR+  ->  z  e.  RR )
8 reeff1olem 14545 . . . . . . . . 9  |-  ( ( z  e.  RR  /\  1  <  z )  ->  E. x  e.  RR  ( exp `  x )  =  z )
97, 8sylan 283 . . . . . . . 8  |-  ( ( z  e.  RR+  /\  1  <  z )  ->  E. x  e.  RR  ( exp `  x
)  =  z )
107adantr 276 . . . . . . . . 9  |-  ( ( z  e.  RR+  /\  z  <  _e )  ->  z  e.  RR )
11 rpgt0 9679 . . . . . . . . . 10  |-  ( z  e.  RR+  ->  0  < 
z )
1211adantr 276 . . . . . . . . 9  |-  ( ( z  e.  RR+  /\  z  <  _e )  ->  0  <  z )
13 simpr 110 . . . . . . . . 9  |-  ( ( z  e.  RR+  /\  z  <  _e )  ->  z  <  _e )
14 0xr 8018 . . . . . . . . . . 11  |-  0  e.  RR*
15 ere 11692 . . . . . . . . . . . 12  |-  _e  e.  RR
1615rexri 8029 . . . . . . . . . . 11  |-  _e  e.  RR*
17 elioo2 9935 . . . . . . . . . . 11  |-  ( ( 0  e.  RR*  /\  _e  e.  RR* )  ->  (
z  e.  ( 0 (,) _e )  <->  ( z  e.  RR  /\  0  < 
z  /\  z  <  _e ) ) )
1814, 16, 17mp2an 426 . . . . . . . . . 10  |-  ( z  e.  ( 0 (,) _e )  <->  ( z  e.  RR  /\  0  < 
z  /\  z  <  _e ) )
19 reeff1oleme 14546 . . . . . . . . . 10  |-  ( z  e.  ( 0 (,) _e )  ->  E. x  e.  RR  ( exp `  x
)  =  z )
2018, 19sylbir 135 . . . . . . . . 9  |-  ( ( z  e.  RR  /\  0  <  z  /\  z  <  _e )  ->  E. x  e.  RR  ( exp `  x
)  =  z )
2110, 12, 13, 20syl3anc 1248 . . . . . . . 8  |-  ( ( z  e.  RR+  /\  z  <  _e )  ->  E. x  e.  RR  ( exp `  x
)  =  z )
22 1lt2 9102 . . . . . . . . . 10  |-  1  <  2
23 egt2lt3 11801 . . . . . . . . . . 11  |-  ( 2  <  _e  /\  _e  <  3 )
2423simpli 111 . . . . . . . . . 10  |-  2  <  _e
25 1re 7970 . . . . . . . . . . 11  |-  1  e.  RR
26 2re 9003 . . . . . . . . . . 11  |-  2  e.  RR
2725, 26, 15lttri 8076 . . . . . . . . . 10  |-  ( ( 1  <  2  /\  2  <  _e )  ->  1  <  _e )
2822, 24, 27mp2an 426 . . . . . . . . 9  |-  1  <  _e
29 1red 7986 . . . . . . . . . 10  |-  ( z  e.  RR+  ->  1  e.  RR )
3015a1i 9 . . . . . . . . . 10  |-  ( z  e.  RR+  ->  _e  e.  RR )
31 axltwlin 8039 . . . . . . . . . 10  |-  ( ( 1  e.  RR  /\  _e  e.  RR  /\  z  e.  RR )  ->  (
1  <  _e  ->  ( 1  <  z  \/  z  <  _e ) ) )
3229, 30, 7, 31syl3anc 1248 . . . . . . . . 9  |-  ( z  e.  RR+  ->  ( 1  <  _e  ->  (
1  <  z  \/  z  <  _e ) ) )
3328, 32mpi 15 . . . . . . . 8  |-  ( z  e.  RR+  ->  ( 1  <  z  \/  z  <  _e ) )
349, 21, 33mpjaodan 799 . . . . . . 7  |-  ( z  e.  RR+  ->  E. x  e.  RR  ( exp `  x
)  =  z )
35 fvres 5551 . . . . . . . . 9  |-  ( x  e.  RR  ->  (
( exp  |`  RR ) `
 x )  =  ( exp `  x
) )
3635eqeq1d 2196 . . . . . . . 8  |-  ( x  e.  RR  ->  (
( ( exp  |`  RR ) `
 x )  =  z  <->  ( exp `  x
)  =  z ) )
3736rexbiia 2502 . . . . . . 7  |-  ( E. x  e.  RR  (
( exp  |`  RR ) `
 x )  =  z  <->  E. x  e.  RR  ( exp `  x )  =  z )
3834, 37sylibr 134 . . . . . 6  |-  ( z  e.  RR+  ->  E. x  e.  RR  ( ( exp  |`  RR ) `  x
)  =  z )
39 fvelrnb 5576 . . . . . . 7  |-  ( ( exp  |`  RR )  Fn  RR  ->  ( z  e.  ran  ( exp  |`  RR )  <->  E. x  e.  RR  ( ( exp  |`  RR ) `
 x )  =  z ) )
404, 39ax-mp 5 . . . . . 6  |-  ( z  e.  ran  ( exp  |`  RR )  <->  E. x  e.  RR  ( ( exp  |`  RR ) `  x
)  =  z )
4138, 40sylibr 134 . . . . 5  |-  ( z  e.  RR+  ->  z  e. 
ran  ( exp  |`  RR ) )
4241ssriv 3171 . . . 4  |-  RR+  C_  ran  ( exp  |`  RR )
436, 42eqssi 3183 . . 3  |-  ran  ( exp  |`  RR )  = 
RR+
44 df-fo 5234 . . 3  |-  ( ( exp  |`  RR ) : RR -onto-> RR+  <->  ( ( exp  |`  RR )  Fn  RR  /\ 
ran  ( exp  |`  RR )  =  RR+ ) )
454, 43, 44mpbir2an 943 . 2  |-  ( exp  |`  RR ) : RR -onto-> RR+
46 df-f1o 5235 . 2  |-  ( ( exp  |`  RR ) : RR -1-1-onto-> RR+  <->  ( ( exp  |`  RR ) : RR -1-1-> RR+ 
/\  ( exp  |`  RR ) : RR -onto-> RR+ )
)
471, 45, 46mpbir2an 943 1  |-  ( exp  |`  RR ) : RR -1-1-onto-> RR+
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709    /\ w3a 979    = wceq 1363    e. wcel 2158   E.wrex 2466    C_ wss 3141   class class class wbr 4015   ran crn 4639    |` cres 4640    Fn wfn 5223   -->wf 5224   -1-1->wf1 5225   -onto->wfo 5226   -1-1-onto->wf1o 5227   ` cfv 5228  (class class class)co 5888   RRcr 7824   0cc0 7825   1c1 7826   RR*cxr 8005    < clt 8006   2c2 8984   3c3 8985   RR+crp 9667   (,)cioo 9902   expce 11664   _eceu 11665
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2160  ax-14 2161  ax-ext 2169  ax-coll 4130  ax-sep 4133  ax-nul 4141  ax-pow 4186  ax-pr 4221  ax-un 4445  ax-setind 4548  ax-iinf 4599  ax-cnex 7916  ax-resscn 7917  ax-1cn 7918  ax-1re 7919  ax-icn 7920  ax-addcl 7921  ax-addrcl 7922  ax-mulcl 7923  ax-mulrcl 7924  ax-addcom 7925  ax-mulcom 7926  ax-addass 7927  ax-mulass 7928  ax-distr 7929  ax-i2m1 7930  ax-0lt1 7931  ax-1rid 7932  ax-0id 7933  ax-rnegex 7934  ax-precex 7935  ax-cnre 7936  ax-pre-ltirr 7937  ax-pre-ltwlin 7938  ax-pre-lttrn 7939  ax-pre-apti 7940  ax-pre-ltadd 7941  ax-pre-mulgt0 7942  ax-pre-mulext 7943  ax-arch 7944  ax-caucvg 7945  ax-pre-suploc 7946  ax-addf 7947  ax-mulf 7948
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 980  df-3an 981  df-tru 1366  df-fal 1369  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ne 2358  df-nel 2453  df-ral 2470  df-rex 2471  df-reu 2472  df-rmo 2473  df-rab 2474  df-v 2751  df-sbc 2975  df-csb 3070  df-dif 3143  df-un 3145  df-in 3147  df-ss 3154  df-nul 3435  df-if 3547  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-int 3857  df-iun 3900  df-disj 3993  df-br 4016  df-opab 4077  df-mpt 4078  df-tr 4114  df-id 4305  df-po 4308  df-iso 4309  df-iord 4378  df-on 4380  df-ilim 4381  df-suc 4383  df-iom 4602  df-xp 4644  df-rel 4645  df-cnv 4646  df-co 4647  df-dm 4648  df-rn 4649  df-res 4650  df-ima 4651  df-iota 5190  df-fun 5230  df-fn 5231  df-f 5232  df-f1 5233  df-fo 5234  df-f1o 5235  df-fv 5236  df-isom 5237  df-riota 5844  df-ov 5891  df-oprab 5892  df-mpo 5893  df-of 6097  df-1st 6155  df-2nd 6156  df-recs 6320  df-irdg 6385  df-frec 6406  df-1o 6431  df-oadd 6435  df-er 6549  df-map 6664  df-pm 6665  df-en 6755  df-dom 6756  df-fin 6757  df-sup 6997  df-inf 6998  df-pnf 8008  df-mnf 8009  df-xr 8010  df-ltxr 8011  df-le 8012  df-sub 8144  df-neg 8145  df-reap 8546  df-ap 8553  df-div 8644  df-inn 8934  df-2 8992  df-3 8993  df-4 8994  df-n0 9191  df-z 9268  df-uz 9543  df-q 9634  df-rp 9668  df-xneg 9786  df-xadd 9787  df-ioo 9906  df-ico 9908  df-icc 9909  df-fz 10023  df-fzo 10157  df-seqfrec 10460  df-exp 10534  df-fac 10720  df-bc 10742  df-ihash 10770  df-shft 10838  df-cj 10865  df-re 10866  df-im 10867  df-rsqrt 11021  df-abs 11022  df-clim 11301  df-sumdc 11376  df-ef 11670  df-e 11671  df-rest 12708  df-topgen 12727  df-psmet 13786  df-xmet 13787  df-met 13788  df-bl 13789  df-mopn 13790  df-top 13851  df-topon 13864  df-bases 13896  df-ntr 13949  df-cn 14041  df-cnp 14042  df-tx 14106  df-cncf 14411  df-limced 14478  df-dvap 14479
This theorem is referenced by:  reefiso  14551  dfrelog  14634  relogf1o  14635  reeflog  14637
  Copyright terms: Public domain W3C validator