ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reeff1o Unicode version

Theorem reeff1o 15447
Description: The real exponential function is one-to-one onto. (Contributed by Paul Chapman, 18-Oct-2007.) (Revised by Mario Carneiro, 10-Nov-2013.)
Assertion
Ref Expression
reeff1o  |-  ( exp  |`  RR ) : RR -1-1-onto-> RR+

Proof of Theorem reeff1o
Dummy variables  x  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reeff1 12211 . 2  |-  ( exp  |`  RR ) : RR -1-1-> RR+
2 f1f 5531 . . . 4  |-  ( ( exp  |`  RR ) : RR -1-1-> RR+  ->  ( exp  |`  RR ) : RR --> RR+ )
3 ffn 5473 . . . 4  |-  ( ( exp  |`  RR ) : RR --> RR+  ->  ( exp  |`  RR )  Fn  RR )
41, 2, 3mp2b 8 . . 3  |-  ( exp  |`  RR )  Fn  RR
5 frn 5482 . . . . 5  |-  ( ( exp  |`  RR ) : RR --> RR+  ->  ran  ( exp  |`  RR )  C_  RR+ )
61, 2, 5mp2b 8 . . . 4  |-  ran  ( exp  |`  RR )  C_  RR+
7 rpre 9856 . . . . . . . . 9  |-  ( z  e.  RR+  ->  z  e.  RR )
8 reeff1olem 15445 . . . . . . . . 9  |-  ( ( z  e.  RR  /\  1  <  z )  ->  E. x  e.  RR  ( exp `  x )  =  z )
97, 8sylan 283 . . . . . . . 8  |-  ( ( z  e.  RR+  /\  1  <  z )  ->  E. x  e.  RR  ( exp `  x
)  =  z )
107adantr 276 . . . . . . . . 9  |-  ( ( z  e.  RR+  /\  z  <  _e )  ->  z  e.  RR )
11 rpgt0 9861 . . . . . . . . . 10  |-  ( z  e.  RR+  ->  0  < 
z )
1211adantr 276 . . . . . . . . 9  |-  ( ( z  e.  RR+  /\  z  <  _e )  ->  0  <  z )
13 simpr 110 . . . . . . . . 9  |-  ( ( z  e.  RR+  /\  z  <  _e )  ->  z  <  _e )
14 0xr 8193 . . . . . . . . . . 11  |-  0  e.  RR*
15 ere 12181 . . . . . . . . . . . 12  |-  _e  e.  RR
1615rexri 8204 . . . . . . . . . . 11  |-  _e  e.  RR*
17 elioo2 10117 . . . . . . . . . . 11  |-  ( ( 0  e.  RR*  /\  _e  e.  RR* )  ->  (
z  e.  ( 0 (,) _e )  <->  ( z  e.  RR  /\  0  < 
z  /\  z  <  _e ) ) )
1814, 16, 17mp2an 426 . . . . . . . . . 10  |-  ( z  e.  ( 0 (,) _e )  <->  ( z  e.  RR  /\  0  < 
z  /\  z  <  _e ) )
19 reeff1oleme 15446 . . . . . . . . . 10  |-  ( z  e.  ( 0 (,) _e )  ->  E. x  e.  RR  ( exp `  x
)  =  z )
2018, 19sylbir 135 . . . . . . . . 9  |-  ( ( z  e.  RR  /\  0  <  z  /\  z  <  _e )  ->  E. x  e.  RR  ( exp `  x
)  =  z )
2110, 12, 13, 20syl3anc 1271 . . . . . . . 8  |-  ( ( z  e.  RR+  /\  z  <  _e )  ->  E. x  e.  RR  ( exp `  x
)  =  z )
22 1lt2 9280 . . . . . . . . . 10  |-  1  <  2
23 egt2lt3 12291 . . . . . . . . . . 11  |-  ( 2  <  _e  /\  _e  <  3 )
2423simpli 111 . . . . . . . . . 10  |-  2  <  _e
25 1re 8145 . . . . . . . . . . 11  |-  1  e.  RR
26 2re 9180 . . . . . . . . . . 11  |-  2  e.  RR
2725, 26, 15lttri 8251 . . . . . . . . . 10  |-  ( ( 1  <  2  /\  2  <  _e )  ->  1  <  _e )
2822, 24, 27mp2an 426 . . . . . . . . 9  |-  1  <  _e
29 1red 8161 . . . . . . . . . 10  |-  ( z  e.  RR+  ->  1  e.  RR )
3015a1i 9 . . . . . . . . . 10  |-  ( z  e.  RR+  ->  _e  e.  RR )
31 axltwlin 8214 . . . . . . . . . 10  |-  ( ( 1  e.  RR  /\  _e  e.  RR  /\  z  e.  RR )  ->  (
1  <  _e  ->  ( 1  <  z  \/  z  <  _e ) ) )
3229, 30, 7, 31syl3anc 1271 . . . . . . . . 9  |-  ( z  e.  RR+  ->  ( 1  <  _e  ->  (
1  <  z  \/  z  <  _e ) ) )
3328, 32mpi 15 . . . . . . . 8  |-  ( z  e.  RR+  ->  ( 1  <  z  \/  z  <  _e ) )
349, 21, 33mpjaodan 803 . . . . . . 7  |-  ( z  e.  RR+  ->  E. x  e.  RR  ( exp `  x
)  =  z )
35 fvres 5651 . . . . . . . . 9  |-  ( x  e.  RR  ->  (
( exp  |`  RR ) `
 x )  =  ( exp `  x
) )
3635eqeq1d 2238 . . . . . . . 8  |-  ( x  e.  RR  ->  (
( ( exp  |`  RR ) `
 x )  =  z  <->  ( exp `  x
)  =  z ) )
3736rexbiia 2545 . . . . . . 7  |-  ( E. x  e.  RR  (
( exp  |`  RR ) `
 x )  =  z  <->  E. x  e.  RR  ( exp `  x )  =  z )
3834, 37sylibr 134 . . . . . 6  |-  ( z  e.  RR+  ->  E. x  e.  RR  ( ( exp  |`  RR ) `  x
)  =  z )
39 fvelrnb 5681 . . . . . . 7  |-  ( ( exp  |`  RR )  Fn  RR  ->  ( z  e.  ran  ( exp  |`  RR )  <->  E. x  e.  RR  ( ( exp  |`  RR ) `
 x )  =  z ) )
404, 39ax-mp 5 . . . . . 6  |-  ( z  e.  ran  ( exp  |`  RR )  <->  E. x  e.  RR  ( ( exp  |`  RR ) `  x
)  =  z )
4138, 40sylibr 134 . . . . 5  |-  ( z  e.  RR+  ->  z  e. 
ran  ( exp  |`  RR ) )
4241ssriv 3228 . . . 4  |-  RR+  C_  ran  ( exp  |`  RR )
436, 42eqssi 3240 . . 3  |-  ran  ( exp  |`  RR )  = 
RR+
44 df-fo 5324 . . 3  |-  ( ( exp  |`  RR ) : RR -onto-> RR+  <->  ( ( exp  |`  RR )  Fn  RR  /\ 
ran  ( exp  |`  RR )  =  RR+ ) )
454, 43, 44mpbir2an 948 . 2  |-  ( exp  |`  RR ) : RR -onto-> RR+
46 df-f1o 5325 . 2  |-  ( ( exp  |`  RR ) : RR -1-1-onto-> RR+  <->  ( ( exp  |`  RR ) : RR -1-1-> RR+ 
/\  ( exp  |`  RR ) : RR -onto-> RR+ )
)
471, 45, 46mpbir2an 948 1  |-  ( exp  |`  RR ) : RR -1-1-onto-> RR+
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 713    /\ w3a 1002    = wceq 1395    e. wcel 2200   E.wrex 2509    C_ wss 3197   class class class wbr 4083   ran crn 4720    |` cres 4721    Fn wfn 5313   -->wf 5314   -1-1->wf1 5315   -onto->wfo 5316   -1-1-onto->wf1o 5317   ` cfv 5318  (class class class)co 6001   RRcr 7998   0cc0 7999   1c1 8000   RR*cxr 8180    < clt 8181   2c2 9161   3c3 9162   RR+crp 9849   (,)cioo 10084   expce 12153   _eceu 12154
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-mulrcl 8098  ax-addcom 8099  ax-mulcom 8100  ax-addass 8101  ax-mulass 8102  ax-distr 8103  ax-i2m1 8104  ax-0lt1 8105  ax-1rid 8106  ax-0id 8107  ax-rnegex 8108  ax-precex 8109  ax-cnre 8110  ax-pre-ltirr 8111  ax-pre-ltwlin 8112  ax-pre-lttrn 8113  ax-pre-apti 8114  ax-pre-ltadd 8115  ax-pre-mulgt0 8116  ax-pre-mulext 8117  ax-arch 8118  ax-caucvg 8119  ax-pre-suploc 8120  ax-addf 8121  ax-mulf 8122
This theorem depends on definitions:  df-bi 117  df-stab 836  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-disj 4060  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-po 4387  df-iso 4388  df-iord 4457  df-on 4459  df-ilim 4460  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-isom 5327  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-of 6218  df-1st 6286  df-2nd 6287  df-recs 6451  df-irdg 6516  df-frec 6537  df-1o 6562  df-oadd 6566  df-er 6680  df-map 6797  df-pm 6798  df-en 6888  df-dom 6889  df-fin 6890  df-sup 7151  df-inf 7152  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-le 8187  df-sub 8319  df-neg 8320  df-reap 8722  df-ap 8729  df-div 8820  df-inn 9111  df-2 9169  df-3 9170  df-4 9171  df-n0 9370  df-z 9447  df-uz 9723  df-q 9815  df-rp 9850  df-xneg 9968  df-xadd 9969  df-ioo 10088  df-ico 10090  df-icc 10091  df-fz 10205  df-fzo 10339  df-seqfrec 10670  df-exp 10761  df-fac 10948  df-bc 10970  df-ihash 10998  df-shft 11326  df-cj 11353  df-re 11354  df-im 11355  df-rsqrt 11509  df-abs 11510  df-clim 11790  df-sumdc 11865  df-ef 12159  df-e 12160  df-rest 13274  df-topgen 13293  df-psmet 14507  df-xmet 14508  df-met 14509  df-bl 14510  df-mopn 14511  df-top 14672  df-topon 14685  df-bases 14717  df-ntr 14770  df-cn 14862  df-cnp 14863  df-tx 14927  df-cncf 15245  df-limced 15330  df-dvap 15331
This theorem is referenced by:  reefiso  15451  dfrelog  15534  relogf1o  15535  reeflog  15537
  Copyright terms: Public domain W3C validator