ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  suplocexprlemell Unicode version

Theorem suplocexprlemell 7856
Description: Lemma for suplocexpr 7868. Membership in the lower cut of the putative supremum. (Contributed by Jim Kingdon, 9-Jan-2024.)
Assertion
Ref Expression
suplocexprlemell  |-  ( B  e.  U. ( 1st " A )  <->  E. x  e.  A  B  e.  ( 1st `  x ) )
Distinct variable groups:    x, A    x, B

Proof of Theorem suplocexprlemell
StepHypRef Expression
1 fo1st 6261 . . . . 5  |-  1st : _V -onto-> _V
2 fofn 5517 . . . . 5  |-  ( 1st
: _V -onto-> _V  ->  1st 
Fn  _V )
31, 2ax-mp 5 . . . 4  |-  1st  Fn  _V
4 ssv 3219 . . . 4  |-  A  C_  _V
5 fnssres 5403 . . . 4  |-  ( ( 1st  Fn  _V  /\  A  C_  _V )  -> 
( 1st  |`  A )  Fn  A )
63, 4, 5mp2an 426 . . 3  |-  ( 1st  |`  A )  Fn  A
7 eluniimadm 5852 . . 3  |-  ( ( 1st  |`  A )  Fn  A  ->  ( B  e.  U. ( ( 1st  |`  A ) " A )  <->  E. x  e.  A  B  e.  ( ( 1st  |`  A ) `
 x ) ) )
86, 7ax-mp 5 . 2  |-  ( B  e.  U. ( ( 1st  |`  A ) " A )  <->  E. x  e.  A  B  e.  ( ( 1st  |`  A ) `
 x ) )
9 resima 5006 . . . 4  |-  ( ( 1st  |`  A ) " A )  =  ( 1st " A )
109unieqi 3869 . . 3  |-  U. (
( 1st  |`  A )
" A )  = 
U. ( 1st " A
)
1110eleq2i 2273 . 2  |-  ( B  e.  U. ( ( 1st  |`  A ) " A )  <->  B  e.  U. ( 1st " A
) )
12 fvres 5618 . . . 4  |-  ( x  e.  A  ->  (
( 1st  |`  A ) `
 x )  =  ( 1st `  x
) )
1312eleq2d 2276 . . 3  |-  ( x  e.  A  ->  ( B  e.  ( ( 1st  |`  A ) `  x )  <->  B  e.  ( 1st `  x ) ) )
1413rexbiia 2522 . 2  |-  ( E. x  e.  A  B  e.  ( ( 1st  |`  A ) `
 x )  <->  E. x  e.  A  B  e.  ( 1st `  x ) )
158, 11, 143bitr3i 210 1  |-  ( B  e.  U. ( 1st " A )  <->  E. x  e.  A  B  e.  ( 1st `  x ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 105    e. wcel 2177   E.wrex 2486   _Vcvv 2773    C_ wss 3170   U.cuni 3859    |` cres 4690   "cima 4691    Fn wfn 5280   -onto->wfo 5283   ` cfv 5285   1stc1st 6242
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4173  ax-pow 4229  ax-pr 4264  ax-un 4493
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-sbc 3003  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3860  df-iun 3938  df-br 4055  df-opab 4117  df-mpt 4118  df-id 4353  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-iota 5246  df-fun 5287  df-fn 5288  df-f 5289  df-fo 5291  df-fv 5293  df-1st 6244
This theorem is referenced by:  suplocexprlemml  7859  suplocexprlemrl  7860  suplocexprlemdisj  7863  suplocexprlemloc  7864  suplocexprlemex  7865  suplocexprlemlub  7867
  Copyright terms: Public domain W3C validator