ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  suplocexprlemell Unicode version

Theorem suplocexprlemell 7896
Description: Lemma for suplocexpr 7908. Membership in the lower cut of the putative supremum. (Contributed by Jim Kingdon, 9-Jan-2024.)
Assertion
Ref Expression
suplocexprlemell  |-  ( B  e.  U. ( 1st " A )  <->  E. x  e.  A  B  e.  ( 1st `  x ) )
Distinct variable groups:    x, A    x, B

Proof of Theorem suplocexprlemell
StepHypRef Expression
1 fo1st 6301 . . . . 5  |-  1st : _V -onto-> _V
2 fofn 5549 . . . . 5  |-  ( 1st
: _V -onto-> _V  ->  1st 
Fn  _V )
31, 2ax-mp 5 . . . 4  |-  1st  Fn  _V
4 ssv 3246 . . . 4  |-  A  C_  _V
5 fnssres 5435 . . . 4  |-  ( ( 1st  Fn  _V  /\  A  C_  _V )  -> 
( 1st  |`  A )  Fn  A )
63, 4, 5mp2an 426 . . 3  |-  ( 1st  |`  A )  Fn  A
7 eluniimadm 5888 . . 3  |-  ( ( 1st  |`  A )  Fn  A  ->  ( B  e.  U. ( ( 1st  |`  A ) " A )  <->  E. x  e.  A  B  e.  ( ( 1st  |`  A ) `
 x ) ) )
86, 7ax-mp 5 . 2  |-  ( B  e.  U. ( ( 1st  |`  A ) " A )  <->  E. x  e.  A  B  e.  ( ( 1st  |`  A ) `
 x ) )
9 resima 5037 . . . 4  |-  ( ( 1st  |`  A ) " A )  =  ( 1st " A )
109unieqi 3897 . . 3  |-  U. (
( 1st  |`  A )
" A )  = 
U. ( 1st " A
)
1110eleq2i 2296 . 2  |-  ( B  e.  U. ( ( 1st  |`  A ) " A )  <->  B  e.  U. ( 1st " A
) )
12 fvres 5650 . . . 4  |-  ( x  e.  A  ->  (
( 1st  |`  A ) `
 x )  =  ( 1st `  x
) )
1312eleq2d 2299 . . 3  |-  ( x  e.  A  ->  ( B  e.  ( ( 1st  |`  A ) `  x )  <->  B  e.  ( 1st `  x ) ) )
1413rexbiia 2545 . 2  |-  ( E. x  e.  A  B  e.  ( ( 1st  |`  A ) `
 x )  <->  E. x  e.  A  B  e.  ( 1st `  x ) )
158, 11, 143bitr3i 210 1  |-  ( B  e.  U. ( 1st " A )  <->  E. x  e.  A  B  e.  ( 1st `  x ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 105    e. wcel 2200   E.wrex 2509   _Vcvv 2799    C_ wss 3197   U.cuni 3887    |` cres 4720   "cima 4721    Fn wfn 5312   -onto->wfo 5315   ` cfv 5317   1stc1st 6282
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-sbc 3029  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-fo 5323  df-fv 5325  df-1st 6284
This theorem is referenced by:  suplocexprlemml  7899  suplocexprlemrl  7900  suplocexprlemdisj  7903  suplocexprlemloc  7904  suplocexprlemex  7905  suplocexprlemlub  7907
  Copyright terms: Public domain W3C validator