ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  suplocexprlemell Unicode version

Theorem suplocexprlemell 7775
Description: Lemma for suplocexpr 7787. Membership in the lower cut of the putative supremum. (Contributed by Jim Kingdon, 9-Jan-2024.)
Assertion
Ref Expression
suplocexprlemell  |-  ( B  e.  U. ( 1st " A )  <->  E. x  e.  A  B  e.  ( 1st `  x ) )
Distinct variable groups:    x, A    x, B

Proof of Theorem suplocexprlemell
StepHypRef Expression
1 fo1st 6212 . . . . 5  |-  1st : _V -onto-> _V
2 fofn 5479 . . . . 5  |-  ( 1st
: _V -onto-> _V  ->  1st 
Fn  _V )
31, 2ax-mp 5 . . . 4  |-  1st  Fn  _V
4 ssv 3202 . . . 4  |-  A  C_  _V
5 fnssres 5368 . . . 4  |-  ( ( 1st  Fn  _V  /\  A  C_  _V )  -> 
( 1st  |`  A )  Fn  A )
63, 4, 5mp2an 426 . . 3  |-  ( 1st  |`  A )  Fn  A
7 eluniimadm 5809 . . 3  |-  ( ( 1st  |`  A )  Fn  A  ->  ( B  e.  U. ( ( 1st  |`  A ) " A )  <->  E. x  e.  A  B  e.  ( ( 1st  |`  A ) `
 x ) ) )
86, 7ax-mp 5 . 2  |-  ( B  e.  U. ( ( 1st  |`  A ) " A )  <->  E. x  e.  A  B  e.  ( ( 1st  |`  A ) `
 x ) )
9 resima 4976 . . . 4  |-  ( ( 1st  |`  A ) " A )  =  ( 1st " A )
109unieqi 3846 . . 3  |-  U. (
( 1st  |`  A )
" A )  = 
U. ( 1st " A
)
1110eleq2i 2260 . 2  |-  ( B  e.  U. ( ( 1st  |`  A ) " A )  <->  B  e.  U. ( 1st " A
) )
12 fvres 5579 . . . 4  |-  ( x  e.  A  ->  (
( 1st  |`  A ) `
 x )  =  ( 1st `  x
) )
1312eleq2d 2263 . . 3  |-  ( x  e.  A  ->  ( B  e.  ( ( 1st  |`  A ) `  x )  <->  B  e.  ( 1st `  x ) ) )
1413rexbiia 2509 . 2  |-  ( E. x  e.  A  B  e.  ( ( 1st  |`  A ) `
 x )  <->  E. x  e.  A  B  e.  ( 1st `  x ) )
158, 11, 143bitr3i 210 1  |-  ( B  e.  U. ( 1st " A )  <->  E. x  e.  A  B  e.  ( 1st `  x ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 105    e. wcel 2164   E.wrex 2473   _Vcvv 2760    C_ wss 3154   U.cuni 3836    |` cres 4662   "cima 4663    Fn wfn 5250   -onto->wfo 5253   ` cfv 5255   1stc1st 6193
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-sbc 2987  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-fo 5261  df-fv 5263  df-1st 6195
This theorem is referenced by:  suplocexprlemml  7778  suplocexprlemrl  7779  suplocexprlemdisj  7782  suplocexprlemloc  7783  suplocexprlemex  7784  suplocexprlemlub  7786
  Copyright terms: Public domain W3C validator