ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  suplocexprlemell Unicode version

Theorem suplocexprlemell 7773
Description: Lemma for suplocexpr 7785. Membership in the lower cut of the putative supremum. (Contributed by Jim Kingdon, 9-Jan-2024.)
Assertion
Ref Expression
suplocexprlemell  |-  ( B  e.  U. ( 1st " A )  <->  E. x  e.  A  B  e.  ( 1st `  x ) )
Distinct variable groups:    x, A    x, B

Proof of Theorem suplocexprlemell
StepHypRef Expression
1 fo1st 6210 . . . . 5  |-  1st : _V -onto-> _V
2 fofn 5478 . . . . 5  |-  ( 1st
: _V -onto-> _V  ->  1st 
Fn  _V )
31, 2ax-mp 5 . . . 4  |-  1st  Fn  _V
4 ssv 3201 . . . 4  |-  A  C_  _V
5 fnssres 5367 . . . 4  |-  ( ( 1st  Fn  _V  /\  A  C_  _V )  -> 
( 1st  |`  A )  Fn  A )
63, 4, 5mp2an 426 . . 3  |-  ( 1st  |`  A )  Fn  A
7 eluniimadm 5808 . . 3  |-  ( ( 1st  |`  A )  Fn  A  ->  ( B  e.  U. ( ( 1st  |`  A ) " A )  <->  E. x  e.  A  B  e.  ( ( 1st  |`  A ) `
 x ) ) )
86, 7ax-mp 5 . 2  |-  ( B  e.  U. ( ( 1st  |`  A ) " A )  <->  E. x  e.  A  B  e.  ( ( 1st  |`  A ) `
 x ) )
9 resima 4975 . . . 4  |-  ( ( 1st  |`  A ) " A )  =  ( 1st " A )
109unieqi 3845 . . 3  |-  U. (
( 1st  |`  A )
" A )  = 
U. ( 1st " A
)
1110eleq2i 2260 . 2  |-  ( B  e.  U. ( ( 1st  |`  A ) " A )  <->  B  e.  U. ( 1st " A
) )
12 fvres 5578 . . . 4  |-  ( x  e.  A  ->  (
( 1st  |`  A ) `
 x )  =  ( 1st `  x
) )
1312eleq2d 2263 . . 3  |-  ( x  e.  A  ->  ( B  e.  ( ( 1st  |`  A ) `  x )  <->  B  e.  ( 1st `  x ) ) )
1413rexbiia 2509 . 2  |-  ( E. x  e.  A  B  e.  ( ( 1st  |`  A ) `
 x )  <->  E. x  e.  A  B  e.  ( 1st `  x ) )
158, 11, 143bitr3i 210 1  |-  ( B  e.  U. ( 1st " A )  <->  E. x  e.  A  B  e.  ( 1st `  x ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 105    e. wcel 2164   E.wrex 2473   _Vcvv 2760    C_ wss 3153   U.cuni 3835    |` cres 4661   "cima 4662    Fn wfn 5249   -onto->wfo 5252   ` cfv 5254   1stc1st 6191
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-sbc 2986  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-fo 5260  df-fv 5262  df-1st 6193
This theorem is referenced by:  suplocexprlemml  7776  suplocexprlemrl  7777  suplocexprlemdisj  7780  suplocexprlemloc  7781  suplocexprlemex  7782  suplocexprlemlub  7784
  Copyright terms: Public domain W3C validator