ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prmuloc2 Unicode version

Theorem prmuloc2 7710
Description: Positive reals are multiplicatively located. This is a variation of prmuloc 7709 which only constructs one (named) point and is therefore often easier to work with. It states that given a ratio  B, there are elements of the lower and upper cut which have exactly that ratio between them. (Contributed by Jim Kingdon, 28-Dec-2019.)
Assertion
Ref Expression
prmuloc2  |-  ( (
<. L ,  U >.  e. 
P.  /\  1Q  <Q  B )  ->  E. x  e.  L  ( x  .Q  B )  e.  U
)
Distinct variable groups:    x, B    x, L    x, U

Proof of Theorem prmuloc2
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 prmuloc 7709 . 2  |-  ( (
<. L ,  U >.  e. 
P.  /\  1Q  <Q  B )  ->  E. x  e.  Q.  E. y  e. 
Q.  ( x  e.  L  /\  y  e.  U  /\  ( y  .Q  1Q )  <Q 
( x  .Q  B
) ) )
2 nfv 1552 . . 3  |-  F/ x
( <. L ,  U >.  e.  P.  /\  1Q  <Q  B )
3 nfre1 2550 . . 3  |-  F/ x E. x  e.  L  ( x  .Q  B
)  e.  U
4 simpr1 1006 . . . . . . . 8  |-  ( ( ( ( <. L ,  U >.  e.  P.  /\  1Q  <Q  B )  /\  ( x  e.  Q.  /\  y  e.  Q. )
)  /\  ( x  e.  L  /\  y  e.  U  /\  (
y  .Q  1Q ) 
<Q  ( x  .Q  B
) ) )  ->  x  e.  L )
5 simpr3 1008 . . . . . . . . . 10  |-  ( ( ( ( <. L ,  U >.  e.  P.  /\  1Q  <Q  B )  /\  ( x  e.  Q.  /\  y  e.  Q. )
)  /\  ( x  e.  L  /\  y  e.  U  /\  (
y  .Q  1Q ) 
<Q  ( x  .Q  B
) ) )  -> 
( y  .Q  1Q )  <Q  ( x  .Q  B ) )
6 simplrr 536 . . . . . . . . . . 11  |-  ( ( ( ( <. L ,  U >.  e.  P.  /\  1Q  <Q  B )  /\  ( x  e.  Q.  /\  y  e.  Q. )
)  /\  ( x  e.  L  /\  y  e.  U  /\  (
y  .Q  1Q ) 
<Q  ( x  .Q  B
) ) )  -> 
y  e.  Q. )
7 mulidnq 7532 . . . . . . . . . . 11  |-  ( y  e.  Q.  ->  (
y  .Q  1Q )  =  y )
8 breq1 4057 . . . . . . . . . . 11  |-  ( ( y  .Q  1Q )  =  y  ->  (
( y  .Q  1Q )  <Q  ( x  .Q  B )  <->  y  <Q  ( x  .Q  B ) ) )
96, 7, 83syl 17 . . . . . . . . . 10  |-  ( ( ( ( <. L ,  U >.  e.  P.  /\  1Q  <Q  B )  /\  ( x  e.  Q.  /\  y  e.  Q. )
)  /\  ( x  e.  L  /\  y  e.  U  /\  (
y  .Q  1Q ) 
<Q  ( x  .Q  B
) ) )  -> 
( ( y  .Q  1Q )  <Q  (
x  .Q  B )  <-> 
y  <Q  ( x  .Q  B ) ) )
105, 9mpbid 147 . . . . . . . . 9  |-  ( ( ( ( <. L ,  U >.  e.  P.  /\  1Q  <Q  B )  /\  ( x  e.  Q.  /\  y  e.  Q. )
)  /\  ( x  e.  L  /\  y  e.  U  /\  (
y  .Q  1Q ) 
<Q  ( x  .Q  B
) ) )  -> 
y  <Q  ( x  .Q  B ) )
11 simplll 533 . . . . . . . . . 10  |-  ( ( ( ( <. L ,  U >.  e.  P.  /\  1Q  <Q  B )  /\  ( x  e.  Q.  /\  y  e.  Q. )
)  /\  ( x  e.  L  /\  y  e.  U  /\  (
y  .Q  1Q ) 
<Q  ( x  .Q  B
) ) )  ->  <. L ,  U >.  e. 
P. )
12 simpr2 1007 . . . . . . . . . 10  |-  ( ( ( ( <. L ,  U >.  e.  P.  /\  1Q  <Q  B )  /\  ( x  e.  Q.  /\  y  e.  Q. )
)  /\  ( x  e.  L  /\  y  e.  U  /\  (
y  .Q  1Q ) 
<Q  ( x  .Q  B
) ) )  -> 
y  e.  U )
13 prcunqu 7628 . . . . . . . . . 10  |-  ( (
<. L ,  U >.  e. 
P.  /\  y  e.  U )  ->  (
y  <Q  ( x  .Q  B )  ->  (
x  .Q  B )  e.  U ) )
1411, 12, 13syl2anc 411 . . . . . . . . 9  |-  ( ( ( ( <. L ,  U >.  e.  P.  /\  1Q  <Q  B )  /\  ( x  e.  Q.  /\  y  e.  Q. )
)  /\  ( x  e.  L  /\  y  e.  U  /\  (
y  .Q  1Q ) 
<Q  ( x  .Q  B
) ) )  -> 
( y  <Q  (
x  .Q  B )  ->  ( x  .Q  B )  e.  U
) )
1510, 14mpd 13 . . . . . . . 8  |-  ( ( ( ( <. L ,  U >.  e.  P.  /\  1Q  <Q  B )  /\  ( x  e.  Q.  /\  y  e.  Q. )
)  /\  ( x  e.  L  /\  y  e.  U  /\  (
y  .Q  1Q ) 
<Q  ( x  .Q  B
) ) )  -> 
( x  .Q  B
)  e.  U )
16 rspe 2556 . . . . . . . 8  |-  ( ( x  e.  L  /\  ( x  .Q  B
)  e.  U )  ->  E. x  e.  L  ( x  .Q  B
)  e.  U )
174, 15, 16syl2anc 411 . . . . . . 7  |-  ( ( ( ( <. L ,  U >.  e.  P.  /\  1Q  <Q  B )  /\  ( x  e.  Q.  /\  y  e.  Q. )
)  /\  ( x  e.  L  /\  y  e.  U  /\  (
y  .Q  1Q ) 
<Q  ( x  .Q  B
) ) )  ->  E. x  e.  L  ( x  .Q  B
)  e.  U )
1817ex 115 . . . . . 6  |-  ( ( ( <. L ,  U >.  e.  P.  /\  1Q  <Q  B )  /\  (
x  e.  Q.  /\  y  e.  Q. )
)  ->  ( (
x  e.  L  /\  y  e.  U  /\  ( y  .Q  1Q )  <Q  ( x  .Q  B ) )  ->  E. x  e.  L  ( x  .Q  B
)  e.  U ) )
1918anassrs 400 . . . . 5  |-  ( ( ( ( <. L ,  U >.  e.  P.  /\  1Q  <Q  B )  /\  x  e.  Q. )  /\  y  e.  Q. )  ->  ( ( x  e.  L  /\  y  e.  U  /\  (
y  .Q  1Q ) 
<Q  ( x  .Q  B
) )  ->  E. x  e.  L  ( x  .Q  B )  e.  U
) )
2019rexlimdva 2624 . . . 4  |-  ( ( ( <. L ,  U >.  e.  P.  /\  1Q  <Q  B )  /\  x  e.  Q. )  ->  ( E. y  e.  Q.  ( x  e.  L  /\  y  e.  U  /\  ( y  .Q  1Q )  <Q  ( x  .Q  B ) )  ->  E. x  e.  L  ( x  .Q  B
)  e.  U ) )
2120ex 115 . . 3  |-  ( (
<. L ,  U >.  e. 
P.  /\  1Q  <Q  B )  ->  ( x  e.  Q.  ->  ( E. y  e.  Q.  (
x  e.  L  /\  y  e.  U  /\  ( y  .Q  1Q )  <Q  ( x  .Q  B ) )  ->  E. x  e.  L  ( x  .Q  B
)  e.  U ) ) )
222, 3, 21rexlimd 2621 . 2  |-  ( (
<. L ,  U >.  e. 
P.  /\  1Q  <Q  B )  ->  ( E. x  e.  Q.  E. y  e.  Q.  ( x  e.  L  /\  y  e.  U  /\  ( y  .Q  1Q )  <Q 
( x  .Q  B
) )  ->  E. x  e.  L  ( x  .Q  B )  e.  U
) )
231, 22mpd 13 1  |-  ( (
<. L ,  U >.  e. 
P.  /\  1Q  <Q  B )  ->  E. x  e.  L  ( x  .Q  B )  e.  U
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 981    = wceq 1373    e. wcel 2177   E.wrex 2486   <.cop 3641   class class class wbr 4054  (class class class)co 5962   Q.cnq 7423   1Qc1q 7424    .Q cmq 7426    <Q cltq 7428   P.cnp 7434
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4170  ax-sep 4173  ax-nul 4181  ax-pow 4229  ax-pr 4264  ax-un 4493  ax-setind 4598  ax-iinf 4649
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3860  df-int 3895  df-iun 3938  df-br 4055  df-opab 4117  df-mpt 4118  df-tr 4154  df-eprel 4349  df-id 4353  df-po 4356  df-iso 4357  df-iord 4426  df-on 4428  df-suc 4431  df-iom 4652  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-iota 5246  df-fun 5287  df-fn 5288  df-f 5289  df-f1 5290  df-fo 5291  df-f1o 5292  df-fv 5293  df-ov 5965  df-oprab 5966  df-mpo 5967  df-1st 6244  df-2nd 6245  df-recs 6409  df-irdg 6474  df-1o 6520  df-2o 6521  df-oadd 6524  df-omul 6525  df-er 6638  df-ec 6640  df-qs 6644  df-ni 7447  df-pli 7448  df-mi 7449  df-lti 7450  df-plpq 7487  df-mpq 7488  df-enq 7490  df-nqqs 7491  df-plqqs 7492  df-mqqs 7493  df-1nqqs 7494  df-rq 7495  df-ltnqqs 7496  df-enq0 7567  df-nq0 7568  df-0nq0 7569  df-plq0 7570  df-mq0 7571  df-inp 7609
This theorem is referenced by:  recexprlem1ssl  7776  recexprlem1ssu  7777
  Copyright terms: Public domain W3C validator