ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prmuloc2 Unicode version

Theorem prmuloc2 7566
Description: Positive reals are multiplicatively located. This is a variation of prmuloc 7565 which only constructs one (named) point and is therefore often easier to work with. It states that given a ratio  B, there are elements of the lower and upper cut which have exactly that ratio between them. (Contributed by Jim Kingdon, 28-Dec-2019.)
Assertion
Ref Expression
prmuloc2  |-  ( (
<. L ,  U >.  e. 
P.  /\  1Q  <Q  B )  ->  E. x  e.  L  ( x  .Q  B )  e.  U
)
Distinct variable groups:    x, B    x, L    x, U

Proof of Theorem prmuloc2
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 prmuloc 7565 . 2  |-  ( (
<. L ,  U >.  e. 
P.  /\  1Q  <Q  B )  ->  E. x  e.  Q.  E. y  e. 
Q.  ( x  e.  L  /\  y  e.  U  /\  ( y  .Q  1Q )  <Q 
( x  .Q  B
) ) )
2 nfv 1528 . . 3  |-  F/ x
( <. L ,  U >.  e.  P.  /\  1Q  <Q  B )
3 nfre1 2520 . . 3  |-  F/ x E. x  e.  L  ( x  .Q  B
)  e.  U
4 simpr1 1003 . . . . . . . 8  |-  ( ( ( ( <. L ,  U >.  e.  P.  /\  1Q  <Q  B )  /\  ( x  e.  Q.  /\  y  e.  Q. )
)  /\  ( x  e.  L  /\  y  e.  U  /\  (
y  .Q  1Q ) 
<Q  ( x  .Q  B
) ) )  ->  x  e.  L )
5 simpr3 1005 . . . . . . . . . 10  |-  ( ( ( ( <. L ,  U >.  e.  P.  /\  1Q  <Q  B )  /\  ( x  e.  Q.  /\  y  e.  Q. )
)  /\  ( x  e.  L  /\  y  e.  U  /\  (
y  .Q  1Q ) 
<Q  ( x  .Q  B
) ) )  -> 
( y  .Q  1Q )  <Q  ( x  .Q  B ) )
6 simplrr 536 . . . . . . . . . . 11  |-  ( ( ( ( <. L ,  U >.  e.  P.  /\  1Q  <Q  B )  /\  ( x  e.  Q.  /\  y  e.  Q. )
)  /\  ( x  e.  L  /\  y  e.  U  /\  (
y  .Q  1Q ) 
<Q  ( x  .Q  B
) ) )  -> 
y  e.  Q. )
7 mulidnq 7388 . . . . . . . . . . 11  |-  ( y  e.  Q.  ->  (
y  .Q  1Q )  =  y )
8 breq1 4007 . . . . . . . . . . 11  |-  ( ( y  .Q  1Q )  =  y  ->  (
( y  .Q  1Q )  <Q  ( x  .Q  B )  <->  y  <Q  ( x  .Q  B ) ) )
96, 7, 83syl 17 . . . . . . . . . 10  |-  ( ( ( ( <. L ,  U >.  e.  P.  /\  1Q  <Q  B )  /\  ( x  e.  Q.  /\  y  e.  Q. )
)  /\  ( x  e.  L  /\  y  e.  U  /\  (
y  .Q  1Q ) 
<Q  ( x  .Q  B
) ) )  -> 
( ( y  .Q  1Q )  <Q  (
x  .Q  B )  <-> 
y  <Q  ( x  .Q  B ) ) )
105, 9mpbid 147 . . . . . . . . 9  |-  ( ( ( ( <. L ,  U >.  e.  P.  /\  1Q  <Q  B )  /\  ( x  e.  Q.  /\  y  e.  Q. )
)  /\  ( x  e.  L  /\  y  e.  U  /\  (
y  .Q  1Q ) 
<Q  ( x  .Q  B
) ) )  -> 
y  <Q  ( x  .Q  B ) )
11 simplll 533 . . . . . . . . . 10  |-  ( ( ( ( <. L ,  U >.  e.  P.  /\  1Q  <Q  B )  /\  ( x  e.  Q.  /\  y  e.  Q. )
)  /\  ( x  e.  L  /\  y  e.  U  /\  (
y  .Q  1Q ) 
<Q  ( x  .Q  B
) ) )  ->  <. L ,  U >.  e. 
P. )
12 simpr2 1004 . . . . . . . . . 10  |-  ( ( ( ( <. L ,  U >.  e.  P.  /\  1Q  <Q  B )  /\  ( x  e.  Q.  /\  y  e.  Q. )
)  /\  ( x  e.  L  /\  y  e.  U  /\  (
y  .Q  1Q ) 
<Q  ( x  .Q  B
) ) )  -> 
y  e.  U )
13 prcunqu 7484 . . . . . . . . . 10  |-  ( (
<. L ,  U >.  e. 
P.  /\  y  e.  U )  ->  (
y  <Q  ( x  .Q  B )  ->  (
x  .Q  B )  e.  U ) )
1411, 12, 13syl2anc 411 . . . . . . . . 9  |-  ( ( ( ( <. L ,  U >.  e.  P.  /\  1Q  <Q  B )  /\  ( x  e.  Q.  /\  y  e.  Q. )
)  /\  ( x  e.  L  /\  y  e.  U  /\  (
y  .Q  1Q ) 
<Q  ( x  .Q  B
) ) )  -> 
( y  <Q  (
x  .Q  B )  ->  ( x  .Q  B )  e.  U
) )
1510, 14mpd 13 . . . . . . . 8  |-  ( ( ( ( <. L ,  U >.  e.  P.  /\  1Q  <Q  B )  /\  ( x  e.  Q.  /\  y  e.  Q. )
)  /\  ( x  e.  L  /\  y  e.  U  /\  (
y  .Q  1Q ) 
<Q  ( x  .Q  B
) ) )  -> 
( x  .Q  B
)  e.  U )
16 rspe 2526 . . . . . . . 8  |-  ( ( x  e.  L  /\  ( x  .Q  B
)  e.  U )  ->  E. x  e.  L  ( x  .Q  B
)  e.  U )
174, 15, 16syl2anc 411 . . . . . . 7  |-  ( ( ( ( <. L ,  U >.  e.  P.  /\  1Q  <Q  B )  /\  ( x  e.  Q.  /\  y  e.  Q. )
)  /\  ( x  e.  L  /\  y  e.  U  /\  (
y  .Q  1Q ) 
<Q  ( x  .Q  B
) ) )  ->  E. x  e.  L  ( x  .Q  B
)  e.  U )
1817ex 115 . . . . . 6  |-  ( ( ( <. L ,  U >.  e.  P.  /\  1Q  <Q  B )  /\  (
x  e.  Q.  /\  y  e.  Q. )
)  ->  ( (
x  e.  L  /\  y  e.  U  /\  ( y  .Q  1Q )  <Q  ( x  .Q  B ) )  ->  E. x  e.  L  ( x  .Q  B
)  e.  U ) )
1918anassrs 400 . . . . 5  |-  ( ( ( ( <. L ,  U >.  e.  P.  /\  1Q  <Q  B )  /\  x  e.  Q. )  /\  y  e.  Q. )  ->  ( ( x  e.  L  /\  y  e.  U  /\  (
y  .Q  1Q ) 
<Q  ( x  .Q  B
) )  ->  E. x  e.  L  ( x  .Q  B )  e.  U
) )
2019rexlimdva 2594 . . . 4  |-  ( ( ( <. L ,  U >.  e.  P.  /\  1Q  <Q  B )  /\  x  e.  Q. )  ->  ( E. y  e.  Q.  ( x  e.  L  /\  y  e.  U  /\  ( y  .Q  1Q )  <Q  ( x  .Q  B ) )  ->  E. x  e.  L  ( x  .Q  B
)  e.  U ) )
2120ex 115 . . 3  |-  ( (
<. L ,  U >.  e. 
P.  /\  1Q  <Q  B )  ->  ( x  e.  Q.  ->  ( E. y  e.  Q.  (
x  e.  L  /\  y  e.  U  /\  ( y  .Q  1Q )  <Q  ( x  .Q  B ) )  ->  E. x  e.  L  ( x  .Q  B
)  e.  U ) ) )
222, 3, 21rexlimd 2591 . 2  |-  ( (
<. L ,  U >.  e. 
P.  /\  1Q  <Q  B )  ->  ( E. x  e.  Q.  E. y  e.  Q.  ( x  e.  L  /\  y  e.  U  /\  ( y  .Q  1Q )  <Q 
( x  .Q  B
) )  ->  E. x  e.  L  ( x  .Q  B )  e.  U
) )
231, 22mpd 13 1  |-  ( (
<. L ,  U >.  e. 
P.  /\  1Q  <Q  B )  ->  E. x  e.  L  ( x  .Q  B )  e.  U
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 978    = wceq 1353    e. wcel 2148   E.wrex 2456   <.cop 3596   class class class wbr 4004  (class class class)co 5875   Q.cnq 7279   1Qc1q 7280    .Q cmq 7282    <Q cltq 7284   P.cnp 7290
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4119  ax-sep 4122  ax-nul 4130  ax-pow 4175  ax-pr 4210  ax-un 4434  ax-setind 4537  ax-iinf 4588
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2740  df-sbc 2964  df-csb 3059  df-dif 3132  df-un 3134  df-in 3136  df-ss 3143  df-nul 3424  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-int 3846  df-iun 3889  df-br 4005  df-opab 4066  df-mpt 4067  df-tr 4103  df-eprel 4290  df-id 4294  df-po 4297  df-iso 4298  df-iord 4367  df-on 4369  df-suc 4372  df-iom 4591  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-rn 4638  df-res 4639  df-ima 4640  df-iota 5179  df-fun 5219  df-fn 5220  df-f 5221  df-f1 5222  df-fo 5223  df-f1o 5224  df-fv 5225  df-ov 5878  df-oprab 5879  df-mpo 5880  df-1st 6141  df-2nd 6142  df-recs 6306  df-irdg 6371  df-1o 6417  df-2o 6418  df-oadd 6421  df-omul 6422  df-er 6535  df-ec 6537  df-qs 6541  df-ni 7303  df-pli 7304  df-mi 7305  df-lti 7306  df-plpq 7343  df-mpq 7344  df-enq 7346  df-nqqs 7347  df-plqqs 7348  df-mqqs 7349  df-1nqqs 7350  df-rq 7351  df-ltnqqs 7352  df-enq0 7423  df-nq0 7424  df-0nq0 7425  df-plq0 7426  df-mq0 7427  df-inp 7465
This theorem is referenced by:  recexprlem1ssl  7632  recexprlem1ssu  7633
  Copyright terms: Public domain W3C validator