ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prarloclem3step Unicode version

Theorem prarloclem3step 7486
Description: Induction step for prarloclem3 7487. (Contributed by Jim Kingdon, 9-Nov-2019.)
Assertion
Ref Expression
prarloclem3step  |-  ( ( ( X  e.  om  /\  ( <. L ,  U >.  e.  P.  /\  A  e.  L  /\  P  e. 
Q. ) )  /\  E. y  e.  om  (
( A +Q0  ( [ <. y ,  1o >. ] ~Q0 ·Q0  P ) )  e.  L  /\  ( A  +Q  ( [ <. ( ( y  +o  2o )  +o 
suc  X ) ,  1o >. ]  ~Q  .Q  P ) )  e.  U ) )  ->  E. y  e.  om  ( ( A +Q0  ( [ <. y ,  1o >. ] ~Q0 ·Q0  P ) )  e.  L  /\  ( A  +Q  ( [ <. ( ( y  +o  2o )  +o  X ) ,  1o >. ]  ~Q  .Q  P
) )  e.  U
) )
Distinct variable groups:    y, A    y, L    y, P    y, U    y, X

Proof of Theorem prarloclem3step
StepHypRef Expression
1 nfv 1528 . . 3  |-  F/ y ( X  e.  om  /\  ( <. L ,  U >.  e.  P.  /\  A  e.  L  /\  P  e. 
Q. ) )
2 nfre1 2520 . . 3  |-  F/ y E. y  e.  om  ( ( A +Q0  ( [ <. y ,  1o >. ] ~Q0 ·Q0  P ) )  e.  L  /\  ( A  +Q  ( [ <. ( ( y  +o  2o )  +o  X ) ,  1o >. ]  ~Q  .Q  P
) )  e.  U
)
3 prarloclemlo 7484 . . . . 5  |-  ( ( ( X  e.  om  /\  ( <. L ,  U >.  e.  P.  /\  A  e.  L  /\  P  e. 
Q. ) )  /\  y  e.  om )  ->  ( ( A  +Q  ( [ <. ( y  +o  1o ) ,  1o >. ]  ~Q  .Q  P
) )  e.  L  ->  ( ( ( A +Q0  ( [ <. y ,  1o >. ] ~Q0 ·Q0  P )
)  e.  L  /\  ( A  +Q  ( [ <. ( ( y  +o  2o )  +o 
suc  X ) ,  1o >. ]  ~Q  .Q  P ) )  e.  U )  ->  E. y  e.  om  ( ( A +Q0  ( [ <. y ,  1o >. ] ~Q0 ·Q0  P )
)  e.  L  /\  ( A  +Q  ( [ <. ( ( y  +o  2o )  +o  X ) ,  1o >. ]  ~Q  .Q  P
) )  e.  U
) ) ) )
4 prarloclemup 7485 . . . . 5  |-  ( ( ( X  e.  om  /\  ( <. L ,  U >.  e.  P.  /\  A  e.  L  /\  P  e. 
Q. ) )  /\  y  e.  om )  ->  ( ( A  +Q  ( [ <. ( ( y  +o  2o )  +o  X ) ,  1o >. ]  ~Q  .Q  P
) )  e.  U  ->  ( ( ( A +Q0  ( [ <. y ,  1o >. ] ~Q0 ·Q0  P )
)  e.  L  /\  ( A  +Q  ( [ <. ( ( y  +o  2o )  +o 
suc  X ) ,  1o >. ]  ~Q  .Q  P ) )  e.  U )  ->  E. y  e.  om  ( ( A +Q0  ( [ <. y ,  1o >. ] ~Q0 ·Q0  P )
)  e.  L  /\  ( A  +Q  ( [ <. ( ( y  +o  2o )  +o  X ) ,  1o >. ]  ~Q  .Q  P
) )  e.  U
) ) ) )
5 prarloclemlt 7483 . . . . . 6  |-  ( ( ( X  e.  om  /\  ( <. L ,  U >.  e.  P.  /\  A  e.  L  /\  P  e. 
Q. ) )  /\  y  e.  om )  ->  ( A  +Q  ( [ <. ( y  +o  1o ) ,  1o >. ]  ~Q  .Q  P
) )  <Q  ( A  +Q  ( [ <. ( ( y  +o  2o )  +o  X ) ,  1o >. ]  ~Q  .Q  P ) ) )
6 prloc 7481 . . . . . . . . 9  |-  ( (
<. L ,  U >.  e. 
P.  /\  ( A  +Q  ( [ <. (
y  +o  1o ) ,  1o >. ]  ~Q  .Q  P ) )  <Q 
( A  +Q  ( [ <. ( ( y  +o  2o )  +o  X ) ,  1o >. ]  ~Q  .Q  P
) ) )  -> 
( ( A  +Q  ( [ <. ( y  +o  1o ) ,  1o >. ]  ~Q  .Q  P
) )  e.  L  \/  ( A  +Q  ( [ <. ( ( y  +o  2o )  +o  X ) ,  1o >. ]  ~Q  .Q  P
) )  e.  U
) )
76ex 115 . . . . . . . 8  |-  ( <. L ,  U >.  e. 
P.  ->  ( ( A  +Q  ( [ <. ( y  +o  1o ) ,  1o >. ]  ~Q  .Q  P ) )  <Q 
( A  +Q  ( [ <. ( ( y  +o  2o )  +o  X ) ,  1o >. ]  ~Q  .Q  P
) )  ->  (
( A  +Q  ( [ <. ( y  +o  1o ) ,  1o >. ]  ~Q  .Q  P
) )  e.  L  \/  ( A  +Q  ( [ <. ( ( y  +o  2o )  +o  X ) ,  1o >. ]  ~Q  .Q  P
) )  e.  U
) ) )
873ad2ant1 1018 . . . . . . 7  |-  ( (
<. L ,  U >.  e. 
P.  /\  A  e.  L  /\  P  e.  Q. )  ->  ( ( A  +Q  ( [ <. ( y  +o  1o ) ,  1o >. ]  ~Q  .Q  P ) )  <Q 
( A  +Q  ( [ <. ( ( y  +o  2o )  +o  X ) ,  1o >. ]  ~Q  .Q  P
) )  ->  (
( A  +Q  ( [ <. ( y  +o  1o ) ,  1o >. ]  ~Q  .Q  P
) )  e.  L  \/  ( A  +Q  ( [ <. ( ( y  +o  2o )  +o  X ) ,  1o >. ]  ~Q  .Q  P
) )  e.  U
) ) )
98ad2antlr 489 . . . . . 6  |-  ( ( ( X  e.  om  /\  ( <. L ,  U >.  e.  P.  /\  A  e.  L  /\  P  e. 
Q. ) )  /\  y  e.  om )  ->  ( ( A  +Q  ( [ <. ( y  +o  1o ) ,  1o >. ]  ~Q  .Q  P
) )  <Q  ( A  +Q  ( [ <. ( ( y  +o  2o )  +o  X ) ,  1o >. ]  ~Q  .Q  P ) )  -> 
( ( A  +Q  ( [ <. ( y  +o  1o ) ,  1o >. ]  ~Q  .Q  P
) )  e.  L  \/  ( A  +Q  ( [ <. ( ( y  +o  2o )  +o  X ) ,  1o >. ]  ~Q  .Q  P
) )  e.  U
) ) )
105, 9mpd 13 . . . . 5  |-  ( ( ( X  e.  om  /\  ( <. L ,  U >.  e.  P.  /\  A  e.  L  /\  P  e. 
Q. ) )  /\  y  e.  om )  ->  ( ( A  +Q  ( [ <. ( y  +o  1o ) ,  1o >. ]  ~Q  .Q  P
) )  e.  L  \/  ( A  +Q  ( [ <. ( ( y  +o  2o )  +o  X ) ,  1o >. ]  ~Q  .Q  P
) )  e.  U
) )
113, 4, 10mpjaod 718 . . . 4  |-  ( ( ( X  e.  om  /\  ( <. L ,  U >.  e.  P.  /\  A  e.  L  /\  P  e. 
Q. ) )  /\  y  e.  om )  ->  ( ( ( A +Q0  ( [ <. y ,  1o >. ] ~Q0 ·Q0  P )
)  e.  L  /\  ( A  +Q  ( [ <. ( ( y  +o  2o )  +o 
suc  X ) ,  1o >. ]  ~Q  .Q  P ) )  e.  U )  ->  E. y  e.  om  ( ( A +Q0  ( [ <. y ,  1o >. ] ~Q0 ·Q0  P )
)  e.  L  /\  ( A  +Q  ( [ <. ( ( y  +o  2o )  +o  X ) ,  1o >. ]  ~Q  .Q  P
) )  e.  U
) ) )
1211ex 115 . . 3  |-  ( ( X  e.  om  /\  ( <. L ,  U >.  e.  P.  /\  A  e.  L  /\  P  e. 
Q. ) )  -> 
( y  e.  om  ->  ( ( ( A +Q0  ( [ <. y ,  1o >. ] ~Q0 ·Q0  P )
)  e.  L  /\  ( A  +Q  ( [ <. ( ( y  +o  2o )  +o 
suc  X ) ,  1o >. ]  ~Q  .Q  P ) )  e.  U )  ->  E. y  e.  om  ( ( A +Q0  ( [ <. y ,  1o >. ] ~Q0 ·Q0  P )
)  e.  L  /\  ( A  +Q  ( [ <. ( ( y  +o  2o )  +o  X ) ,  1o >. ]  ~Q  .Q  P
) )  e.  U
) ) ) )
131, 2, 12rexlimd 2591 . 2  |-  ( ( X  e.  om  /\  ( <. L ,  U >.  e.  P.  /\  A  e.  L  /\  P  e. 
Q. ) )  -> 
( E. y  e. 
om  ( ( A +Q0  ( [ <. y ,  1o >. ] ~Q0 ·Q0  P )
)  e.  L  /\  ( A  +Q  ( [ <. ( ( y  +o  2o )  +o 
suc  X ) ,  1o >. ]  ~Q  .Q  P ) )  e.  U )  ->  E. y  e.  om  ( ( A +Q0  ( [ <. y ,  1o >. ] ~Q0 ·Q0  P )
)  e.  L  /\  ( A  +Q  ( [ <. ( ( y  +o  2o )  +o  X ) ,  1o >. ]  ~Q  .Q  P
) )  e.  U
) ) )
1413imp 124 1  |-  ( ( ( X  e.  om  /\  ( <. L ,  U >.  e.  P.  /\  A  e.  L  /\  P  e. 
Q. ) )  /\  E. y  e.  om  (
( A +Q0  ( [ <. y ,  1o >. ] ~Q0 ·Q0  P ) )  e.  L  /\  ( A  +Q  ( [ <. ( ( y  +o  2o )  +o 
suc  X ) ,  1o >. ]  ~Q  .Q  P ) )  e.  U ) )  ->  E. y  e.  om  ( ( A +Q0  ( [ <. y ,  1o >. ] ~Q0 ·Q0  P ) )  e.  L  /\  ( A  +Q  ( [ <. ( ( y  +o  2o )  +o  X ) ,  1o >. ]  ~Q  .Q  P
) )  e.  U
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    \/ wo 708    /\ w3a 978    e. wcel 2148   E.wrex 2456   <.cop 3594   class class class wbr 4000   suc csuc 4362   omcom 4586  (class class class)co 5869   1oc1o 6404   2oc2o 6405    +o coa 6408   [cec 6527    ~Q ceq 7269   Q.cnq 7270    +Q cplq 7272    .Q cmq 7273    <Q cltq 7275   ~Q0 ceq0 7276   +Q0 cplq0 7279   ·Q0 cmq0 7280   P.cnp 7281
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4115  ax-sep 4118  ax-nul 4126  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-iinf 4584
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-iun 3886  df-br 4001  df-opab 4062  df-mpt 4063  df-tr 4099  df-eprel 4286  df-id 4290  df-iord 4363  df-on 4365  df-suc 4368  df-iom 4587  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-f1 5217  df-fo 5218  df-f1o 5219  df-fv 5220  df-ov 5872  df-oprab 5873  df-mpo 5874  df-1st 6135  df-2nd 6136  df-recs 6300  df-irdg 6365  df-1o 6411  df-2o 6412  df-oadd 6415  df-omul 6416  df-er 6529  df-ec 6531  df-qs 6535  df-ni 7294  df-pli 7295  df-mi 7296  df-lti 7297  df-plpq 7334  df-mpq 7335  df-enq 7337  df-nqqs 7338  df-plqqs 7339  df-mqqs 7340  df-ltnqqs 7343  df-enq0 7414  df-nq0 7415  df-plq0 7417  df-mq0 7418  df-inp 7456
This theorem is referenced by:  prarloclem3  7487
  Copyright terms: Public domain W3C validator