ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  divalglemeuneg Unicode version

Theorem divalglemeuneg 11532
Description: Lemma for divalg 11533. Uniqueness for a negative denominator. (Contributed by Jim Kingdon, 4-Dec-2021.)
Assertion
Ref Expression
divalglemeuneg  |-  ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  <  0 )  ->  E! r  e.  ZZ  E. q  e.  ZZ  ( 0  <_ 
r  /\  r  <  ( abs `  D )  /\  N  =  ( ( q  x.  D
)  +  r ) ) )
Distinct variable groups:    D, q, r    N, q, r

Proof of Theorem divalglemeuneg
Dummy variables  s  t are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp3 968 . . . 4  |-  ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  <  0 )  ->  D  <  0 )
21lt0ne0d 8243 . . 3  |-  ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  <  0 )  ->  D  =/=  0 )
3 divalglemex 11531 . . 3  |-  ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  =/=  0 )  ->  E. r  e.  ZZ  E. q  e.  ZZ  ( 0  <_ 
r  /\  r  <  ( abs `  D )  /\  N  =  ( ( q  x.  D
)  +  r ) ) )
42, 3syld3an3 1246 . 2  |-  ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  <  0 )  ->  E. r  e.  ZZ  E. q  e.  ZZ  ( 0  <_ 
r  /\  r  <  ( abs `  D )  /\  N  =  ( ( q  x.  D
)  +  r ) ) )
5 nfv 1493 . . . . . 6  |-  F/ q ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  <  0 )  /\  (
r  e.  ZZ  /\  s  e.  ZZ )
)
6 nfre1 2453 . . . . . . 7  |-  F/ q E. q  e.  ZZ  ( 0  <_  s  /\  s  <  ( abs `  D )  /\  N  =  ( ( q  x.  D )  +  s ) )
7 nfv 1493 . . . . . . 7  |-  F/ q  r  =  s
86, 7nfim 1536 . . . . . 6  |-  F/ q ( E. q  e.  ZZ  ( 0  <_ 
s  /\  s  <  ( abs `  D )  /\  N  =  ( ( q  x.  D
)  +  s ) )  ->  r  =  s )
9 oveq1 5749 . . . . . . . . . . . 12  |-  ( q  =  t  ->  (
q  x.  D )  =  ( t  x.  D ) )
109oveq1d 5757 . . . . . . . . . . 11  |-  ( q  =  t  ->  (
( q  x.  D
)  +  s )  =  ( ( t  x.  D )  +  s ) )
1110eqeq2d 2129 . . . . . . . . . 10  |-  ( q  =  t  ->  ( N  =  ( (
q  x.  D )  +  s )  <->  N  =  ( ( t  x.  D )  +  s ) ) )
12113anbi3d 1281 . . . . . . . . 9  |-  ( q  =  t  ->  (
( 0  <_  s  /\  s  <  ( abs `  D )  /\  N  =  ( ( q  x.  D )  +  s ) )  <->  ( 0  <_  s  /\  s  <  ( abs `  D
)  /\  N  =  ( ( t  x.  D )  +  s ) ) ) )
1312cbvrexv 2632 . . . . . . . 8  |-  ( E. q  e.  ZZ  (
0  <_  s  /\  s  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  s ) )  <->  E. t  e.  ZZ  ( 0  <_ 
s  /\  s  <  ( abs `  D )  /\  N  =  ( ( t  x.  D
)  +  s ) ) )
14 simpr 109 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  <  0 )  /\  (
r  e.  ZZ  /\  s  e.  ZZ )
)  /\  q  e.  ZZ )  /\  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) ) )  /\  t  e.  ZZ )  /\  ( 0  <_  s  /\  s  <  ( abs `  D )  /\  N  =  ( ( t  x.  D )  +  s ) ) )  /\  q  <  t
)  ->  q  <  t )
15 simp2 967 . . . . . . . . . . . . . . . . . 18  |-  ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  <  0 )  ->  D  e.  ZZ )
1615znegcld 9133 . . . . . . . . . . . . . . . . 17  |-  ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  <  0 )  ->  -u D  e.  ZZ )
1715zred 9131 . . . . . . . . . . . . . . . . . . 19  |-  ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  <  0 )  ->  D  e.  RR )
1817lt0neg1d 8245 . . . . . . . . . . . . . . . . . 18  |-  ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  <  0 )  ->  ( D  <  0  <->  0  <  -u D ) )
191, 18mpbid 146 . . . . . . . . . . . . . . . . 17  |-  ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  <  0 )  ->  0  <  -u D )
20 elnnz 9022 . . . . . . . . . . . . . . . . 17  |-  ( -u D  e.  NN  <->  ( -u D  e.  ZZ  /\  0  <  -u D ) )
2116, 19, 20sylanbrc 413 . . . . . . . . . . . . . . . 16  |-  ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  <  0 )  ->  -u D  e.  NN )
2221ad5antr 487 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  <  0 )  /\  ( r  e.  ZZ  /\  s  e.  ZZ ) )  /\  q  e.  ZZ )  /\  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) ) )  /\  t  e.  ZZ )  /\  ( 0  <_  s  /\  s  <  ( abs `  D )  /\  N  =  ( ( t  x.  D )  +  s ) ) )  ->  -u D  e.  NN )
23 simplrr 510 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  <  0 )  /\  (
r  e.  ZZ  /\  s  e.  ZZ )
)  /\  q  e.  ZZ )  ->  s  e.  ZZ )
2423ad3antrrr 483 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  <  0 )  /\  ( r  e.  ZZ  /\  s  e.  ZZ ) )  /\  q  e.  ZZ )  /\  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) ) )  /\  t  e.  ZZ )  /\  ( 0  <_  s  /\  s  <  ( abs `  D )  /\  N  =  ( ( t  x.  D )  +  s ) ) )  ->  s  e.  ZZ )
25 simplrl 509 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  <  0 )  /\  (
r  e.  ZZ  /\  s  e.  ZZ )
)  /\  q  e.  ZZ )  ->  r  e.  ZZ )
2625ad3antrrr 483 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  <  0 )  /\  ( r  e.  ZZ  /\  s  e.  ZZ ) )  /\  q  e.  ZZ )  /\  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) ) )  /\  t  e.  ZZ )  /\  ( 0  <_  s  /\  s  <  ( abs `  D )  /\  N  =  ( ( t  x.  D )  +  s ) ) )  ->  r  e.  ZZ )
27 simplr 504 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  <  0 )  /\  ( r  e.  ZZ  /\  s  e.  ZZ ) )  /\  q  e.  ZZ )  /\  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) ) )  /\  t  e.  ZZ )  /\  ( 0  <_  s  /\  s  <  ( abs `  D )  /\  N  =  ( ( t  x.  D )  +  s ) ) )  ->  t  e.  ZZ )
2827znegcld 9133 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  <  0 )  /\  ( r  e.  ZZ  /\  s  e.  ZZ ) )  /\  q  e.  ZZ )  /\  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) ) )  /\  t  e.  ZZ )  /\  ( 0  <_  s  /\  s  <  ( abs `  D )  /\  N  =  ( ( t  x.  D )  +  s ) ) )  ->  -u t  e.  ZZ )
29 simpr 109 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  <  0 )  /\  (
r  e.  ZZ  /\  s  e.  ZZ )
)  /\  q  e.  ZZ )  ->  q  e.  ZZ )
3029ad3antrrr 483 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  <  0 )  /\  ( r  e.  ZZ  /\  s  e.  ZZ ) )  /\  q  e.  ZZ )  /\  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) ) )  /\  t  e.  ZZ )  /\  ( 0  <_  s  /\  s  <  ( abs `  D )  /\  N  =  ( ( t  x.  D )  +  s ) ) )  ->  q  e.  ZZ )
3130znegcld 9133 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  <  0 )  /\  ( r  e.  ZZ  /\  s  e.  ZZ ) )  /\  q  e.  ZZ )  /\  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) ) )  /\  t  e.  ZZ )  /\  ( 0  <_  s  /\  s  <  ( abs `  D )  /\  N  =  ( ( t  x.  D )  +  s ) ) )  ->  -u q  e.  ZZ )
32 simpr1 972 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  <  0 )  /\  (
r  e.  ZZ  /\  s  e.  ZZ )
)  /\  q  e.  ZZ )  /\  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) ) )  -> 
0  <_  r )
3332ad2antrr 479 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  <  0 )  /\  ( r  e.  ZZ  /\  s  e.  ZZ ) )  /\  q  e.  ZZ )  /\  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) ) )  /\  t  e.  ZZ )  /\  ( 0  <_  s  /\  s  <  ( abs `  D )  /\  N  =  ( ( t  x.  D )  +  s ) ) )  ->  0  <_  r
)
34 simpr2 973 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  <  0 )  /\  ( r  e.  ZZ  /\  s  e.  ZZ ) )  /\  q  e.  ZZ )  /\  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) ) )  /\  t  e.  ZZ )  /\  ( 0  <_  s  /\  s  <  ( abs `  D )  /\  N  =  ( ( t  x.  D )  +  s ) ) )  ->  s  <  ( abs `  D ) )
35 simpll2 1006 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  <  0 )  /\  (
r  e.  ZZ  /\  s  e.  ZZ )
)  /\  q  e.  ZZ )  ->  D  e.  ZZ )
3635ad3antrrr 483 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  <  0 )  /\  ( r  e.  ZZ  /\  s  e.  ZZ ) )  /\  q  e.  ZZ )  /\  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) ) )  /\  t  e.  ZZ )  /\  ( 0  <_  s  /\  s  <  ( abs `  D )  /\  N  =  ( ( t  x.  D )  +  s ) ) )  ->  D  e.  ZZ )
3736zred 9131 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  <  0 )  /\  ( r  e.  ZZ  /\  s  e.  ZZ ) )  /\  q  e.  ZZ )  /\  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) ) )  /\  t  e.  ZZ )  /\  ( 0  <_  s  /\  s  <  ( abs `  D )  /\  N  =  ( ( t  x.  D )  +  s ) ) )  ->  D  e.  RR )
38 0red 7735 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  <  0 )  /\  ( r  e.  ZZ  /\  s  e.  ZZ ) )  /\  q  e.  ZZ )  /\  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) ) )  /\  t  e.  ZZ )  /\  ( 0  <_  s  /\  s  <  ( abs `  D )  /\  N  =  ( ( t  x.  D )  +  s ) ) )  ->  0  e.  RR )
39 simpll3 1007 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  <  0 )  /\  (
r  e.  ZZ  /\  s  e.  ZZ )
)  /\  q  e.  ZZ )  ->  D  <  0 )
4039ad3antrrr 483 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  <  0 )  /\  ( r  e.  ZZ  /\  s  e.  ZZ ) )  /\  q  e.  ZZ )  /\  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) ) )  /\  t  e.  ZZ )  /\  ( 0  <_  s  /\  s  <  ( abs `  D )  /\  N  =  ( ( t  x.  D )  +  s ) ) )  ->  D  <  0
)
4137, 38, 40ltled 7849 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  <  0 )  /\  ( r  e.  ZZ  /\  s  e.  ZZ ) )  /\  q  e.  ZZ )  /\  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) ) )  /\  t  e.  ZZ )  /\  ( 0  <_  s  /\  s  <  ( abs `  D )  /\  N  =  ( ( t  x.  D )  +  s ) ) )  ->  D  <_  0
)
4237, 41absnidd 10887 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  <  0 )  /\  ( r  e.  ZZ  /\  s  e.  ZZ ) )  /\  q  e.  ZZ )  /\  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) ) )  /\  t  e.  ZZ )  /\  ( 0  <_  s  /\  s  <  ( abs `  D )  /\  N  =  ( ( t  x.  D )  +  s ) ) )  ->  ( abs `  D
)  =  -u D
)
4334, 42breqtrd 3924 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  <  0 )  /\  ( r  e.  ZZ  /\  s  e.  ZZ ) )  /\  q  e.  ZZ )  /\  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) ) )  /\  t  e.  ZZ )  /\  ( 0  <_  s  /\  s  <  ( abs `  D )  /\  N  =  ( ( t  x.  D )  +  s ) ) )  ->  s  <  -u D
)
44 simpr3 974 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  <  0 )  /\  ( r  e.  ZZ  /\  s  e.  ZZ ) )  /\  q  e.  ZZ )  /\  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) ) )  /\  t  e.  ZZ )  /\  ( 0  <_  s  /\  s  <  ( abs `  D )  /\  N  =  ( ( t  x.  D )  +  s ) ) )  ->  N  =  ( ( t  x.  D
)  +  s ) )
4527zcnd 9132 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  <  0 )  /\  ( r  e.  ZZ  /\  s  e.  ZZ ) )  /\  q  e.  ZZ )  /\  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) ) )  /\  t  e.  ZZ )  /\  ( 0  <_  s  /\  s  <  ( abs `  D )  /\  N  =  ( ( t  x.  D )  +  s ) ) )  ->  t  e.  CC )
4636zcnd 9132 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  <  0 )  /\  ( r  e.  ZZ  /\  s  e.  ZZ ) )  /\  q  e.  ZZ )  /\  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) ) )  /\  t  e.  ZZ )  /\  ( 0  <_  s  /\  s  <  ( abs `  D )  /\  N  =  ( ( t  x.  D )  +  s ) ) )  ->  D  e.  CC )
4745, 46mul2negd 8143 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  <  0 )  /\  ( r  e.  ZZ  /\  s  e.  ZZ ) )  /\  q  e.  ZZ )  /\  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) ) )  /\  t  e.  ZZ )  /\  ( 0  <_  s  /\  s  <  ( abs `  D )  /\  N  =  ( ( t  x.  D )  +  s ) ) )  ->  ( -u t  x.  -u D )  =  ( t  x.  D
) )
4847oveq1d 5757 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  <  0 )  /\  ( r  e.  ZZ  /\  s  e.  ZZ ) )  /\  q  e.  ZZ )  /\  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) ) )  /\  t  e.  ZZ )  /\  ( 0  <_  s  /\  s  <  ( abs `  D )  /\  N  =  ( ( t  x.  D )  +  s ) ) )  ->  ( ( -u t  x.  -u D )  +  s )  =  ( ( t  x.  D )  +  s ) )
4944, 48eqtr4d 2153 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  <  0 )  /\  ( r  e.  ZZ  /\  s  e.  ZZ ) )  /\  q  e.  ZZ )  /\  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) ) )  /\  t  e.  ZZ )  /\  ( 0  <_  s  /\  s  <  ( abs `  D )  /\  N  =  ( ( t  x.  D )  +  s ) ) )  ->  N  =  ( ( -u t  x.  -u D )  +  s ) )
50 simpr3 974 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  <  0 )  /\  (
r  e.  ZZ  /\  s  e.  ZZ )
)  /\  q  e.  ZZ )  /\  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) ) )  ->  N  =  ( (
q  x.  D )  +  r ) )
5150ad2antrr 479 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  <  0 )  /\  ( r  e.  ZZ  /\  s  e.  ZZ ) )  /\  q  e.  ZZ )  /\  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) ) )  /\  t  e.  ZZ )  /\  ( 0  <_  s  /\  s  <  ( abs `  D )  /\  N  =  ( ( t  x.  D )  +  s ) ) )  ->  N  =  ( ( q  x.  D
)  +  r ) )
5230zcnd 9132 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  <  0 )  /\  ( r  e.  ZZ  /\  s  e.  ZZ ) )  /\  q  e.  ZZ )  /\  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) ) )  /\  t  e.  ZZ )  /\  ( 0  <_  s  /\  s  <  ( abs `  D )  /\  N  =  ( ( t  x.  D )  +  s ) ) )  ->  q  e.  CC )
5352, 46mul2negd 8143 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  <  0 )  /\  ( r  e.  ZZ  /\  s  e.  ZZ ) )  /\  q  e.  ZZ )  /\  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) ) )  /\  t  e.  ZZ )  /\  ( 0  <_  s  /\  s  <  ( abs `  D )  /\  N  =  ( ( t  x.  D )  +  s ) ) )  ->  ( -u q  x.  -u D )  =  ( q  x.  D
) )
5453oveq1d 5757 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  <  0 )  /\  ( r  e.  ZZ  /\  s  e.  ZZ ) )  /\  q  e.  ZZ )  /\  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) ) )  /\  t  e.  ZZ )  /\  ( 0  <_  s  /\  s  <  ( abs `  D )  /\  N  =  ( ( t  x.  D )  +  s ) ) )  ->  ( ( -u q  x.  -u D )  +  r )  =  ( ( q  x.  D )  +  r ) )
5551, 54eqtr4d 2153 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  <  0 )  /\  ( r  e.  ZZ  /\  s  e.  ZZ ) )  /\  q  e.  ZZ )  /\  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) ) )  /\  t  e.  ZZ )  /\  ( 0  <_  s  /\  s  <  ( abs `  D )  /\  N  =  ( ( t  x.  D )  +  s ) ) )  ->  N  =  ( ( -u q  x.  -u D )  +  r ) )
5649, 55eqtr3d 2152 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  <  0 )  /\  ( r  e.  ZZ  /\  s  e.  ZZ ) )  /\  q  e.  ZZ )  /\  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) ) )  /\  t  e.  ZZ )  /\  ( 0  <_  s  /\  s  <  ( abs `  D )  /\  N  =  ( ( t  x.  D )  +  s ) ) )  ->  ( ( -u t  x.  -u D )  +  s )  =  ( ( -u q  x.  -u D )  +  r ) )
5722, 24, 26, 28, 31, 33, 43, 56divalglemnqt 11529 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  <  0 )  /\  ( r  e.  ZZ  /\  s  e.  ZZ ) )  /\  q  e.  ZZ )  /\  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) ) )  /\  t  e.  ZZ )  /\  ( 0  <_  s  /\  s  <  ( abs `  D )  /\  N  =  ( ( t  x.  D )  +  s ) ) )  ->  -.  -u t  <  -u q )
5830zred 9131 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  <  0 )  /\  ( r  e.  ZZ  /\  s  e.  ZZ ) )  /\  q  e.  ZZ )  /\  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) ) )  /\  t  e.  ZZ )  /\  ( 0  <_  s  /\  s  <  ( abs `  D )  /\  N  =  ( ( t  x.  D )  +  s ) ) )  ->  q  e.  RR )
5927zred 9131 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  <  0 )  /\  ( r  e.  ZZ  /\  s  e.  ZZ ) )  /\  q  e.  ZZ )  /\  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) ) )  /\  t  e.  ZZ )  /\  ( 0  <_  s  /\  s  <  ( abs `  D )  /\  N  =  ( ( t  x.  D )  +  s ) ) )  ->  t  e.  RR )
6058, 59ltnegd 8252 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  <  0 )  /\  ( r  e.  ZZ  /\  s  e.  ZZ ) )  /\  q  e.  ZZ )  /\  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) ) )  /\  t  e.  ZZ )  /\  ( 0  <_  s  /\  s  <  ( abs `  D )  /\  N  =  ( ( t  x.  D )  +  s ) ) )  ->  ( q  < 
t  <->  -u t  <  -u q
) )
6157, 60mtbird 647 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  <  0 )  /\  ( r  e.  ZZ  /\  s  e.  ZZ ) )  /\  q  e.  ZZ )  /\  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) ) )  /\  t  e.  ZZ )  /\  ( 0  <_  s  /\  s  <  ( abs `  D )  /\  N  =  ( ( t  x.  D )  +  s ) ) )  ->  -.  q  <  t )
6261adantr 274 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  <  0 )  /\  (
r  e.  ZZ  /\  s  e.  ZZ )
)  /\  q  e.  ZZ )  /\  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) ) )  /\  t  e.  ZZ )  /\  ( 0  <_  s  /\  s  <  ( abs `  D )  /\  N  =  ( ( t  x.  D )  +  s ) ) )  /\  q  <  t
)  ->  -.  q  <  t )
6314, 62pm2.21dd 594 . . . . . . . . . . 11  |-  ( ( ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  <  0 )  /\  (
r  e.  ZZ  /\  s  e.  ZZ )
)  /\  q  e.  ZZ )  /\  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) ) )  /\  t  e.  ZZ )  /\  ( 0  <_  s  /\  s  <  ( abs `  D )  /\  N  =  ( ( t  x.  D )  +  s ) ) )  /\  q  <  t
)  ->  r  =  s )
6436adantr 274 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  <  0 )  /\  (
r  e.  ZZ  /\  s  e.  ZZ )
)  /\  q  e.  ZZ )  /\  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) ) )  /\  t  e.  ZZ )  /\  ( 0  <_  s  /\  s  <  ( abs `  D )  /\  N  =  ( ( t  x.  D )  +  s ) ) )  /\  q  =  t )  ->  D  e.  ZZ )
6526adantr 274 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  <  0 )  /\  (
r  e.  ZZ  /\  s  e.  ZZ )
)  /\  q  e.  ZZ )  /\  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) ) )  /\  t  e.  ZZ )  /\  ( 0  <_  s  /\  s  <  ( abs `  D )  /\  N  =  ( ( t  x.  D )  +  s ) ) )  /\  q  =  t )  ->  r  e.  ZZ )
6624adantr 274 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  <  0 )  /\  (
r  e.  ZZ  /\  s  e.  ZZ )
)  /\  q  e.  ZZ )  /\  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) ) )  /\  t  e.  ZZ )  /\  ( 0  <_  s  /\  s  <  ( abs `  D )  /\  N  =  ( ( t  x.  D )  +  s ) ) )  /\  q  =  t )  ->  s  e.  ZZ )
6730adantr 274 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  <  0 )  /\  (
r  e.  ZZ  /\  s  e.  ZZ )
)  /\  q  e.  ZZ )  /\  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) ) )  /\  t  e.  ZZ )  /\  ( 0  <_  s  /\  s  <  ( abs `  D )  /\  N  =  ( ( t  x.  D )  +  s ) ) )  /\  q  =  t )  ->  q  e.  ZZ )
6827adantr 274 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  <  0 )  /\  (
r  e.  ZZ  /\  s  e.  ZZ )
)  /\  q  e.  ZZ )  /\  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) ) )  /\  t  e.  ZZ )  /\  ( 0  <_  s  /\  s  <  ( abs `  D )  /\  N  =  ( ( t  x.  D )  +  s ) ) )  /\  q  =  t )  ->  t  e.  ZZ )
69 simpr 109 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  <  0 )  /\  (
r  e.  ZZ  /\  s  e.  ZZ )
)  /\  q  e.  ZZ )  /\  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) ) )  /\  t  e.  ZZ )  /\  ( 0  <_  s  /\  s  <  ( abs `  D )  /\  N  =  ( ( t  x.  D )  +  s ) ) )  /\  q  =  t )  ->  q  =  t )
7051adantr 274 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  <  0 )  /\  (
r  e.  ZZ  /\  s  e.  ZZ )
)  /\  q  e.  ZZ )  /\  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) ) )  /\  t  e.  ZZ )  /\  ( 0  <_  s  /\  s  <  ( abs `  D )  /\  N  =  ( ( t  x.  D )  +  s ) ) )  /\  q  =  t )  ->  N  =  ( ( q  x.  D )  +  r ) )
7144adantr 274 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  <  0 )  /\  (
r  e.  ZZ  /\  s  e.  ZZ )
)  /\  q  e.  ZZ )  /\  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) ) )  /\  t  e.  ZZ )  /\  ( 0  <_  s  /\  s  <  ( abs `  D )  /\  N  =  ( ( t  x.  D )  +  s ) ) )  /\  q  =  t )  ->  N  =  ( ( t  x.  D )  +  s ) )
7270, 71eqtr3d 2152 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  <  0 )  /\  (
r  e.  ZZ  /\  s  e.  ZZ )
)  /\  q  e.  ZZ )  /\  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) ) )  /\  t  e.  ZZ )  /\  ( 0  <_  s  /\  s  <  ( abs `  D )  /\  N  =  ( ( t  x.  D )  +  s ) ) )  /\  q  =  t )  ->  ( (
q  x.  D )  +  r )  =  ( ( t  x.  D )  +  s ) )
7364, 65, 66, 67, 68, 69, 72divalglemqt 11528 . . . . . . . . . . 11  |-  ( ( ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  <  0 )  /\  (
r  e.  ZZ  /\  s  e.  ZZ )
)  /\  q  e.  ZZ )  /\  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) ) )  /\  t  e.  ZZ )  /\  ( 0  <_  s  /\  s  <  ( abs `  D )  /\  N  =  ( ( t  x.  D )  +  s ) ) )  /\  q  =  t )  ->  r  =  s )
74 simpr 109 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  <  0 )  /\  (
r  e.  ZZ  /\  s  e.  ZZ )
)  /\  q  e.  ZZ )  /\  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) ) )  /\  t  e.  ZZ )  /\  ( 0  <_  s  /\  s  <  ( abs `  D )  /\  N  =  ( ( t  x.  D )  +  s ) ) )  /\  t  <  q
)  ->  t  <  q )
75 simpr1 972 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  <  0 )  /\  ( r  e.  ZZ  /\  s  e.  ZZ ) )  /\  q  e.  ZZ )  /\  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) ) )  /\  t  e.  ZZ )  /\  ( 0  <_  s  /\  s  <  ( abs `  D )  /\  N  =  ( ( t  x.  D )  +  s ) ) )  ->  0  <_  s
)
76 simpr2 973 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  <  0 )  /\  (
r  e.  ZZ  /\  s  e.  ZZ )
)  /\  q  e.  ZZ )  /\  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) ) )  -> 
r  <  ( abs `  D ) )
7776ad2antrr 479 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  <  0 )  /\  ( r  e.  ZZ  /\  s  e.  ZZ ) )  /\  q  e.  ZZ )  /\  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) ) )  /\  t  e.  ZZ )  /\  ( 0  <_  s  /\  s  <  ( abs `  D )  /\  N  =  ( ( t  x.  D )  +  s ) ) )  ->  r  <  ( abs `  D ) )
7877, 42breqtrd 3924 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  <  0 )  /\  ( r  e.  ZZ  /\  s  e.  ZZ ) )  /\  q  e.  ZZ )  /\  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) ) )  /\  t  e.  ZZ )  /\  ( 0  <_  s  /\  s  <  ( abs `  D )  /\  N  =  ( ( t  x.  D )  +  s ) ) )  ->  r  <  -u D
)
7955, 49eqtr3d 2152 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  <  0 )  /\  ( r  e.  ZZ  /\  s  e.  ZZ ) )  /\  q  e.  ZZ )  /\  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) ) )  /\  t  e.  ZZ )  /\  ( 0  <_  s  /\  s  <  ( abs `  D )  /\  N  =  ( ( t  x.  D )  +  s ) ) )  ->  ( ( -u q  x.  -u D )  +  r )  =  ( ( -u t  x.  -u D )  +  s ) )
8022, 26, 24, 31, 28, 75, 78, 79divalglemnqt 11529 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  <  0 )  /\  ( r  e.  ZZ  /\  s  e.  ZZ ) )  /\  q  e.  ZZ )  /\  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) ) )  /\  t  e.  ZZ )  /\  ( 0  <_  s  /\  s  <  ( abs `  D )  /\  N  =  ( ( t  x.  D )  +  s ) ) )  ->  -.  -u q  <  -u t )
8159, 58ltnegd 8252 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  <  0 )  /\  ( r  e.  ZZ  /\  s  e.  ZZ ) )  /\  q  e.  ZZ )  /\  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) ) )  /\  t  e.  ZZ )  /\  ( 0  <_  s  /\  s  <  ( abs `  D )  /\  N  =  ( ( t  x.  D )  +  s ) ) )  ->  ( t  < 
q  <->  -u q  <  -u t
) )
8280, 81mtbird 647 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  <  0 )  /\  ( r  e.  ZZ  /\  s  e.  ZZ ) )  /\  q  e.  ZZ )  /\  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) ) )  /\  t  e.  ZZ )  /\  ( 0  <_  s  /\  s  <  ( abs `  D )  /\  N  =  ( ( t  x.  D )  +  s ) ) )  ->  -.  t  <  q )
8382adantr 274 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  <  0 )  /\  (
r  e.  ZZ  /\  s  e.  ZZ )
)  /\  q  e.  ZZ )  /\  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) ) )  /\  t  e.  ZZ )  /\  ( 0  <_  s  /\  s  <  ( abs `  D )  /\  N  =  ( ( t  x.  D )  +  s ) ) )  /\  t  <  q
)  ->  -.  t  <  q )
8474, 83pm2.21dd 594 . . . . . . . . . . 11  |-  ( ( ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  <  0 )  /\  (
r  e.  ZZ  /\  s  e.  ZZ )
)  /\  q  e.  ZZ )  /\  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) ) )  /\  t  e.  ZZ )  /\  ( 0  <_  s  /\  s  <  ( abs `  D )  /\  N  =  ( ( t  x.  D )  +  s ) ) )  /\  t  <  q
)  ->  r  =  s )
85 simplr 504 . . . . . . . . . . . . 13  |-  ( ( ( ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  <  0 )  /\  (
r  e.  ZZ  /\  s  e.  ZZ )
)  /\  q  e.  ZZ )  /\  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) ) )  -> 
q  e.  ZZ )
8685ad2antrr 479 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  <  0 )  /\  ( r  e.  ZZ  /\  s  e.  ZZ ) )  /\  q  e.  ZZ )  /\  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) ) )  /\  t  e.  ZZ )  /\  ( 0  <_  s  /\  s  <  ( abs `  D )  /\  N  =  ( ( t  x.  D )  +  s ) ) )  ->  q  e.  ZZ )
87 ztri3or 9055 . . . . . . . . . . . 12  |-  ( ( q  e.  ZZ  /\  t  e.  ZZ )  ->  ( q  <  t  \/  q  =  t  \/  t  <  q ) )
8886, 27, 87syl2anc 408 . . . . . . . . . . 11  |-  ( ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  <  0 )  /\  ( r  e.  ZZ  /\  s  e.  ZZ ) )  /\  q  e.  ZZ )  /\  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) ) )  /\  t  e.  ZZ )  /\  ( 0  <_  s  /\  s  <  ( abs `  D )  /\  N  =  ( ( t  x.  D )  +  s ) ) )  ->  ( q  < 
t  \/  q  =  t  \/  t  < 
q ) )
8963, 73, 84, 88mpjao3dan 1270 . . . . . . . . . 10  |-  ( ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  <  0 )  /\  ( r  e.  ZZ  /\  s  e.  ZZ ) )  /\  q  e.  ZZ )  /\  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) ) )  /\  t  e.  ZZ )  /\  ( 0  <_  s  /\  s  <  ( abs `  D )  /\  N  =  ( ( t  x.  D )  +  s ) ) )  ->  r  =  s )
9089ex 114 . . . . . . . . 9  |-  ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  <  0 )  /\  (
r  e.  ZZ  /\  s  e.  ZZ )
)  /\  q  e.  ZZ )  /\  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) ) )  /\  t  e.  ZZ )  ->  ( ( 0  <_ 
s  /\  s  <  ( abs `  D )  /\  N  =  ( ( t  x.  D
)  +  s ) )  ->  r  =  s ) )
9190rexlimdva 2526 . . . . . . . 8  |-  ( ( ( ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  <  0 )  /\  (
r  e.  ZZ  /\  s  e.  ZZ )
)  /\  q  e.  ZZ )  /\  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) ) )  -> 
( E. t  e.  ZZ  ( 0  <_ 
s  /\  s  <  ( abs `  D )  /\  N  =  ( ( t  x.  D
)  +  s ) )  ->  r  =  s ) )
9213, 91syl5bi 151 . . . . . . 7  |-  ( ( ( ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  <  0 )  /\  (
r  e.  ZZ  /\  s  e.  ZZ )
)  /\  q  e.  ZZ )  /\  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) ) )  -> 
( E. q  e.  ZZ  ( 0  <_ 
s  /\  s  <  ( abs `  D )  /\  N  =  ( ( q  x.  D
)  +  s ) )  ->  r  =  s ) )
9392exp31 361 . . . . . 6  |-  ( ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  <  0 )  /\  ( r  e.  ZZ  /\  s  e.  ZZ ) )  ->  ( q  e.  ZZ  ->  ( (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) )  ->  ( E. q  e.  ZZ  ( 0  <_  s  /\  s  <  ( abs `  D )  /\  N  =  ( ( q  x.  D )  +  s ) )  -> 
r  =  s ) ) ) )
945, 8, 93rexlimd 2523 . . . . 5  |-  ( ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  <  0 )  /\  ( r  e.  ZZ  /\  s  e.  ZZ ) )  ->  ( E. q  e.  ZZ  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) )  ->  ( E. q  e.  ZZ  ( 0  <_  s  /\  s  <  ( abs `  D )  /\  N  =  ( ( q  x.  D )  +  s ) )  -> 
r  =  s ) ) )
9594impd 252 . . . 4  |-  ( ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  <  0 )  /\  ( r  e.  ZZ  /\  s  e.  ZZ ) )  ->  ( ( E. q  e.  ZZ  ( 0  <_  r  /\  r  <  ( abs `  D )  /\  N  =  ( ( q  x.  D )  +  r ) )  /\  E. q  e.  ZZ  (
0  <_  s  /\  s  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  s ) ) )  -> 
r  =  s ) )
9695ralrimivva 2491 . . 3  |-  ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  <  0 )  ->  A. r  e.  ZZ  A. s  e.  ZZ  ( ( E. q  e.  ZZ  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) )  /\  E. q  e.  ZZ  (
0  <_  s  /\  s  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  s ) ) )  -> 
r  =  s ) )
97 breq2 3903 . . . . . 6  |-  ( r  =  s  ->  (
0  <_  r  <->  0  <_  s ) )
98 breq1 3902 . . . . . 6  |-  ( r  =  s  ->  (
r  <  ( abs `  D )  <->  s  <  ( abs `  D ) ) )
99 oveq2 5750 . . . . . . 7  |-  ( r  =  s  ->  (
( q  x.  D
)  +  r )  =  ( ( q  x.  D )  +  s ) )
10099eqeq2d 2129 . . . . . 6  |-  ( r  =  s  ->  ( N  =  ( (
q  x.  D )  +  r )  <->  N  =  ( ( q  x.  D )  +  s ) ) )
10197, 98, 1003anbi123d 1275 . . . . 5  |-  ( r  =  s  ->  (
( 0  <_  r  /\  r  <  ( abs `  D )  /\  N  =  ( ( q  x.  D )  +  r ) )  <->  ( 0  <_  s  /\  s  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  s ) ) ) )
102101rexbidv 2415 . . . 4  |-  ( r  =  s  ->  ( E. q  e.  ZZ  ( 0  <_  r  /\  r  <  ( abs `  D )  /\  N  =  ( ( q  x.  D )  +  r ) )  <->  E. q  e.  ZZ  ( 0  <_ 
s  /\  s  <  ( abs `  D )  /\  N  =  ( ( q  x.  D
)  +  s ) ) ) )
103102rmo4 2850 . . 3  |-  ( E* r  e.  ZZ  E. q  e.  ZZ  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) )  <->  A. r  e.  ZZ  A. s  e.  ZZ  ( ( E. q  e.  ZZ  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) )  /\  E. q  e.  ZZ  (
0  <_  s  /\  s  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  s ) ) )  -> 
r  =  s ) )
10496, 103sylibr 133 . 2  |-  ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  <  0 )  ->  E* r  e.  ZZ  E. q  e.  ZZ  ( 0  <_ 
r  /\  r  <  ( abs `  D )  /\  N  =  ( ( q  x.  D
)  +  r ) ) )
105 reu5 2620 . 2  |-  ( E! r  e.  ZZ  E. q  e.  ZZ  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) )  <->  ( E. r  e.  ZZ  E. q  e.  ZZ  ( 0  <_ 
r  /\  r  <  ( abs `  D )  /\  N  =  ( ( q  x.  D
)  +  r ) )  /\  E* r  e.  ZZ  E. q  e.  ZZ  ( 0  <_ 
r  /\  r  <  ( abs `  D )  /\  N  =  ( ( q  x.  D
)  +  r ) ) ) )
1064, 104, 105sylanbrc 413 1  |-  ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  <  0 )  ->  E! r  e.  ZZ  E. q  e.  ZZ  ( 0  <_ 
r  /\  r  <  ( abs `  D )  /\  N  =  ( ( q  x.  D
)  +  r ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    \/ w3o 946    /\ w3a 947    = wceq 1316    e. wcel 1465    =/= wne 2285   A.wral 2393   E.wrex 2394   E!wreu 2395   E*wrmo 2396   class class class wbr 3899   ` cfv 5093  (class class class)co 5742   0cc0 7588    + caddc 7591    x. cmul 7593    < clt 7768    <_ cle 7769   -ucneg 7902   NNcn 8684   ZZcz 9012   abscabs 10724
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 588  ax-in2 589  ax-io 683  ax-5 1408  ax-7 1409  ax-gen 1410  ax-ie1 1454  ax-ie2 1455  ax-8 1467  ax-10 1468  ax-11 1469  ax-i12 1470  ax-bndl 1471  ax-4 1472  ax-13 1476  ax-14 1477  ax-17 1491  ax-i9 1495  ax-ial 1499  ax-i5r 1500  ax-ext 2099  ax-coll 4013  ax-sep 4016  ax-nul 4024  ax-pow 4068  ax-pr 4101  ax-un 4325  ax-setind 4422  ax-iinf 4472  ax-cnex 7679  ax-resscn 7680  ax-1cn 7681  ax-1re 7682  ax-icn 7683  ax-addcl 7684  ax-addrcl 7685  ax-mulcl 7686  ax-mulrcl 7687  ax-addcom 7688  ax-mulcom 7689  ax-addass 7690  ax-mulass 7691  ax-distr 7692  ax-i2m1 7693  ax-0lt1 7694  ax-1rid 7695  ax-0id 7696  ax-rnegex 7697  ax-precex 7698  ax-cnre 7699  ax-pre-ltirr 7700  ax-pre-ltwlin 7701  ax-pre-lttrn 7702  ax-pre-apti 7703  ax-pre-ltadd 7704  ax-pre-mulgt0 7705  ax-pre-mulext 7706  ax-arch 7707
This theorem depends on definitions:  df-bi 116  df-dc 805  df-3or 948  df-3an 949  df-tru 1319  df-fal 1322  df-nf 1422  df-sb 1721  df-eu 1980  df-mo 1981  df-clab 2104  df-cleq 2110  df-clel 2113  df-nfc 2247  df-ne 2286  df-nel 2381  df-ral 2398  df-rex 2399  df-reu 2400  df-rmo 2401  df-rab 2402  df-v 2662  df-sbc 2883  df-csb 2976  df-dif 3043  df-un 3045  df-in 3047  df-ss 3054  df-nul 3334  df-if 3445  df-pw 3482  df-sn 3503  df-pr 3504  df-op 3506  df-uni 3707  df-int 3742  df-iun 3785  df-br 3900  df-opab 3960  df-mpt 3961  df-tr 3997  df-id 4185  df-po 4188  df-iso 4189  df-iord 4258  df-on 4260  df-ilim 4261  df-suc 4263  df-iom 4475  df-xp 4515  df-rel 4516  df-cnv 4517  df-co 4518  df-dm 4519  df-rn 4520  df-res 4521  df-ima 4522  df-iota 5058  df-fun 5095  df-fn 5096  df-f 5097  df-f1 5098  df-fo 5099  df-f1o 5100  df-fv 5101  df-riota 5698  df-ov 5745  df-oprab 5746  df-mpo 5747  df-1st 6006  df-2nd 6007  df-recs 6170  df-frec 6256  df-pnf 7770  df-mnf 7771  df-xr 7772  df-ltxr 7773  df-le 7774  df-sub 7903  df-neg 7904  df-reap 8304  df-ap 8311  df-div 8400  df-inn 8685  df-2 8743  df-n0 8936  df-z 9013  df-uz 9283  df-q 9368  df-rp 9398  df-fl 9998  df-mod 10051  df-seqfrec 10174  df-exp 10248  df-cj 10569  df-re 10570  df-im 10571  df-rsqrt 10725  df-abs 10726
This theorem is referenced by:  divalg  11533
  Copyright terms: Public domain W3C validator