ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  divalglemeunn Unicode version

Theorem divalglemeunn 11654
Description: Lemma for divalg 11657. Uniqueness for a positive denominator. (Contributed by Jim Kingdon, 4-Dec-2021.)
Assertion
Ref Expression
divalglemeunn  |-  ( ( N  e.  ZZ  /\  D  e.  NN )  ->  E! r  e.  ZZ  E. q  e.  ZZ  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) ) )
Distinct variable groups:    D, q, r    N, q, r

Proof of Theorem divalglemeunn
Dummy variables  s  t are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 divalglemnn 11651 . 2  |-  ( ( N  e.  ZZ  /\  D  e.  NN )  ->  E. r  e.  ZZ  E. q  e.  ZZ  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) ) )
2 nfv 1509 . . . . . 6  |-  F/ q ( ( N  e.  ZZ  /\  D  e.  NN )  /\  (
r  e.  ZZ  /\  s  e.  ZZ )
)
3 nfre1 2479 . . . . . . 7  |-  F/ q E. q  e.  ZZ  ( 0  <_  s  /\  s  <  ( abs `  D )  /\  N  =  ( ( q  x.  D )  +  s ) )
4 nfv 1509 . . . . . . 7  |-  F/ q  r  =  s
53, 4nfim 1552 . . . . . 6  |-  F/ q ( E. q  e.  ZZ  ( 0  <_ 
s  /\  s  <  ( abs `  D )  /\  N  =  ( ( q  x.  D
)  +  s ) )  ->  r  =  s )
6 oveq1 5789 . . . . . . . . . . . 12  |-  ( q  =  t  ->  (
q  x.  D )  =  ( t  x.  D ) )
76oveq1d 5797 . . . . . . . . . . 11  |-  ( q  =  t  ->  (
( q  x.  D
)  +  s )  =  ( ( t  x.  D )  +  s ) )
87eqeq2d 2152 . . . . . . . . . 10  |-  ( q  =  t  ->  ( N  =  ( (
q  x.  D )  +  s )  <->  N  =  ( ( t  x.  D )  +  s ) ) )
983anbi3d 1297 . . . . . . . . 9  |-  ( q  =  t  ->  (
( 0  <_  s  /\  s  <  ( abs `  D )  /\  N  =  ( ( q  x.  D )  +  s ) )  <->  ( 0  <_  s  /\  s  <  ( abs `  D
)  /\  N  =  ( ( t  x.  D )  +  s ) ) ) )
109cbvrexv 2658 . . . . . . . 8  |-  ( E. q  e.  ZZ  (
0  <_  s  /\  s  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  s ) )  <->  E. t  e.  ZZ  ( 0  <_ 
s  /\  s  <  ( abs `  D )  /\  N  =  ( ( t  x.  D
)  +  s ) ) )
11 simpr 109 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  NN )  /\  (
r  e.  ZZ  /\  s  e.  ZZ )
)  /\  q  e.  ZZ )  /\  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) ) )  /\  t  e.  ZZ )  /\  ( 0  <_  s  /\  s  <  ( abs `  D )  /\  N  =  ( ( t  x.  D )  +  s ) ) )  /\  q  <  t
)  ->  q  <  t )
12 simplr 520 . . . . . . . . . . . . . . 15  |-  ( ( ( N  e.  ZZ  /\  D  e.  NN )  /\  ( r  e.  ZZ  /\  s  e.  ZZ ) )  ->  D  e.  NN )
1312ad4antr 486 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  NN )  /\  ( r  e.  ZZ  /\  s  e.  ZZ ) )  /\  q  e.  ZZ )  /\  ( 0  <_  r  /\  r  <  ( abs `  D )  /\  N  =  ( ( q  x.  D )  +  r ) ) )  /\  t  e.  ZZ )  /\  ( 0  <_ 
s  /\  s  <  ( abs `  D )  /\  N  =  ( ( t  x.  D
)  +  s ) ) )  ->  D  e.  NN )
14 simplrl 525 . . . . . . . . . . . . . . 15  |-  ( ( ( ( N  e.  ZZ  /\  D  e.  NN )  /\  (
r  e.  ZZ  /\  s  e.  ZZ )
)  /\  q  e.  ZZ )  ->  r  e.  ZZ )
1514ad3antrrr 484 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  NN )  /\  ( r  e.  ZZ  /\  s  e.  ZZ ) )  /\  q  e.  ZZ )  /\  ( 0  <_  r  /\  r  <  ( abs `  D )  /\  N  =  ( ( q  x.  D )  +  r ) ) )  /\  t  e.  ZZ )  /\  ( 0  <_ 
s  /\  s  <  ( abs `  D )  /\  N  =  ( ( t  x.  D
)  +  s ) ) )  ->  r  e.  ZZ )
16 simplrr 526 . . . . . . . . . . . . . . 15  |-  ( ( ( ( N  e.  ZZ  /\  D  e.  NN )  /\  (
r  e.  ZZ  /\  s  e.  ZZ )
)  /\  q  e.  ZZ )  ->  s  e.  ZZ )
1716ad3antrrr 484 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  NN )  /\  ( r  e.  ZZ  /\  s  e.  ZZ ) )  /\  q  e.  ZZ )  /\  ( 0  <_  r  /\  r  <  ( abs `  D )  /\  N  =  ( ( q  x.  D )  +  r ) ) )  /\  t  e.  ZZ )  /\  ( 0  <_ 
s  /\  s  <  ( abs `  D )  /\  N  =  ( ( t  x.  D
)  +  s ) ) )  ->  s  e.  ZZ )
18 simpr 109 . . . . . . . . . . . . . . 15  |-  ( ( ( ( N  e.  ZZ  /\  D  e.  NN )  /\  (
r  e.  ZZ  /\  s  e.  ZZ )
)  /\  q  e.  ZZ )  ->  q  e.  ZZ )
1918ad3antrrr 484 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  NN )  /\  ( r  e.  ZZ  /\  s  e.  ZZ ) )  /\  q  e.  ZZ )  /\  ( 0  <_  r  /\  r  <  ( abs `  D )  /\  N  =  ( ( q  x.  D )  +  r ) ) )  /\  t  e.  ZZ )  /\  ( 0  <_ 
s  /\  s  <  ( abs `  D )  /\  N  =  ( ( t  x.  D
)  +  s ) ) )  ->  q  e.  ZZ )
20 simplr 520 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  NN )  /\  ( r  e.  ZZ  /\  s  e.  ZZ ) )  /\  q  e.  ZZ )  /\  ( 0  <_  r  /\  r  <  ( abs `  D )  /\  N  =  ( ( q  x.  D )  +  r ) ) )  /\  t  e.  ZZ )  /\  ( 0  <_ 
s  /\  s  <  ( abs `  D )  /\  N  =  ( ( t  x.  D
)  +  s ) ) )  ->  t  e.  ZZ )
21 simpr1 988 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  NN )  /\  ( r  e.  ZZ  /\  s  e.  ZZ ) )  /\  q  e.  ZZ )  /\  ( 0  <_  r  /\  r  <  ( abs `  D )  /\  N  =  ( ( q  x.  D )  +  r ) ) )  /\  t  e.  ZZ )  /\  ( 0  <_ 
s  /\  s  <  ( abs `  D )  /\  N  =  ( ( t  x.  D
)  +  s ) ) )  ->  0  <_  s )
22 simpr2 989 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( N  e.  ZZ  /\  D  e.  NN )  /\  (
r  e.  ZZ  /\  s  e.  ZZ )
)  /\  q  e.  ZZ )  /\  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) ) )  -> 
r  <  ( abs `  D ) )
2322ad2antrr 480 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  NN )  /\  ( r  e.  ZZ  /\  s  e.  ZZ ) )  /\  q  e.  ZZ )  /\  ( 0  <_  r  /\  r  <  ( abs `  D )  /\  N  =  ( ( q  x.  D )  +  r ) ) )  /\  t  e.  ZZ )  /\  ( 0  <_ 
s  /\  s  <  ( abs `  D )  /\  N  =  ( ( t  x.  D
)  +  s ) ) )  ->  r  <  ( abs `  D
) )
2413nnred 8757 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  NN )  /\  ( r  e.  ZZ  /\  s  e.  ZZ ) )  /\  q  e.  ZZ )  /\  ( 0  <_  r  /\  r  <  ( abs `  D )  /\  N  =  ( ( q  x.  D )  +  r ) ) )  /\  t  e.  ZZ )  /\  ( 0  <_ 
s  /\  s  <  ( abs `  D )  /\  N  =  ( ( t  x.  D
)  +  s ) ) )  ->  D  e.  RR )
2513nnnn0d 9054 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  NN )  /\  ( r  e.  ZZ  /\  s  e.  ZZ ) )  /\  q  e.  ZZ )  /\  ( 0  <_  r  /\  r  <  ( abs `  D )  /\  N  =  ( ( q  x.  D )  +  r ) ) )  /\  t  e.  ZZ )  /\  ( 0  <_ 
s  /\  s  <  ( abs `  D )  /\  N  =  ( ( t  x.  D
)  +  s ) ) )  ->  D  e.  NN0 )
2625nn0ge0d 9057 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  NN )  /\  ( r  e.  ZZ  /\  s  e.  ZZ ) )  /\  q  e.  ZZ )  /\  ( 0  <_  r  /\  r  <  ( abs `  D )  /\  N  =  ( ( q  x.  D )  +  r ) ) )  /\  t  e.  ZZ )  /\  ( 0  <_ 
s  /\  s  <  ( abs `  D )  /\  N  =  ( ( t  x.  D
)  +  s ) ) )  ->  0  <_  D )
2724, 26absidd 10971 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  NN )  /\  ( r  e.  ZZ  /\  s  e.  ZZ ) )  /\  q  e.  ZZ )  /\  ( 0  <_  r  /\  r  <  ( abs `  D )  /\  N  =  ( ( q  x.  D )  +  r ) ) )  /\  t  e.  ZZ )  /\  ( 0  <_ 
s  /\  s  <  ( abs `  D )  /\  N  =  ( ( t  x.  D
)  +  s ) ) )  ->  ( abs `  D )  =  D )
2823, 27breqtrd 3962 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  NN )  /\  ( r  e.  ZZ  /\  s  e.  ZZ ) )  /\  q  e.  ZZ )  /\  ( 0  <_  r  /\  r  <  ( abs `  D )  /\  N  =  ( ( q  x.  D )  +  r ) ) )  /\  t  e.  ZZ )  /\  ( 0  <_ 
s  /\  s  <  ( abs `  D )  /\  N  =  ( ( t  x.  D
)  +  s ) ) )  ->  r  <  D )
29 simpr3 990 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( N  e.  ZZ  /\  D  e.  NN )  /\  (
r  e.  ZZ  /\  s  e.  ZZ )
)  /\  q  e.  ZZ )  /\  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) ) )  ->  N  =  ( (
q  x.  D )  +  r ) )
3029ad2antrr 480 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  NN )  /\  ( r  e.  ZZ  /\  s  e.  ZZ ) )  /\  q  e.  ZZ )  /\  ( 0  <_  r  /\  r  <  ( abs `  D )  /\  N  =  ( ( q  x.  D )  +  r ) ) )  /\  t  e.  ZZ )  /\  ( 0  <_ 
s  /\  s  <  ( abs `  D )  /\  N  =  ( ( t  x.  D
)  +  s ) ) )  ->  N  =  ( ( q  x.  D )  +  r ) )
31 simpr3 990 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  NN )  /\  ( r  e.  ZZ  /\  s  e.  ZZ ) )  /\  q  e.  ZZ )  /\  ( 0  <_  r  /\  r  <  ( abs `  D )  /\  N  =  ( ( q  x.  D )  +  r ) ) )  /\  t  e.  ZZ )  /\  ( 0  <_ 
s  /\  s  <  ( abs `  D )  /\  N  =  ( ( t  x.  D
)  +  s ) ) )  ->  N  =  ( ( t  x.  D )  +  s ) )
3230, 31eqtr3d 2175 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  NN )  /\  ( r  e.  ZZ  /\  s  e.  ZZ ) )  /\  q  e.  ZZ )  /\  ( 0  <_  r  /\  r  <  ( abs `  D )  /\  N  =  ( ( q  x.  D )  +  r ) ) )  /\  t  e.  ZZ )  /\  ( 0  <_ 
s  /\  s  <  ( abs `  D )  /\  N  =  ( ( t  x.  D
)  +  s ) ) )  ->  (
( q  x.  D
)  +  r )  =  ( ( t  x.  D )  +  s ) )
3313, 15, 17, 19, 20, 21, 28, 32divalglemnqt 11653 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  NN )  /\  ( r  e.  ZZ  /\  s  e.  ZZ ) )  /\  q  e.  ZZ )  /\  ( 0  <_  r  /\  r  <  ( abs `  D )  /\  N  =  ( ( q  x.  D )  +  r ) ) )  /\  t  e.  ZZ )  /\  ( 0  <_ 
s  /\  s  <  ( abs `  D )  /\  N  =  ( ( t  x.  D
)  +  s ) ) )  ->  -.  q  <  t )
3433adantr 274 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  NN )  /\  (
r  e.  ZZ  /\  s  e.  ZZ )
)  /\  q  e.  ZZ )  /\  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) ) )  /\  t  e.  ZZ )  /\  ( 0  <_  s  /\  s  <  ( abs `  D )  /\  N  =  ( ( t  x.  D )  +  s ) ) )  /\  q  <  t
)  ->  -.  q  <  t )
3511, 34pm2.21dd 610 . . . . . . . . . . 11  |-  ( ( ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  NN )  /\  (
r  e.  ZZ  /\  s  e.  ZZ )
)  /\  q  e.  ZZ )  /\  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) ) )  /\  t  e.  ZZ )  /\  ( 0  <_  s  /\  s  <  ( abs `  D )  /\  N  =  ( ( t  x.  D )  +  s ) ) )  /\  q  <  t
)  ->  r  =  s )
3613adantr 274 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  NN )  /\  (
r  e.  ZZ  /\  s  e.  ZZ )
)  /\  q  e.  ZZ )  /\  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) ) )  /\  t  e.  ZZ )  /\  ( 0  <_  s  /\  s  <  ( abs `  D )  /\  N  =  ( ( t  x.  D )  +  s ) ) )  /\  q  =  t )  ->  D  e.  NN )
3736nnzd 9196 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  NN )  /\  (
r  e.  ZZ  /\  s  e.  ZZ )
)  /\  q  e.  ZZ )  /\  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) ) )  /\  t  e.  ZZ )  /\  ( 0  <_  s  /\  s  <  ( abs `  D )  /\  N  =  ( ( t  x.  D )  +  s ) ) )  /\  q  =  t )  ->  D  e.  ZZ )
3815adantr 274 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  NN )  /\  (
r  e.  ZZ  /\  s  e.  ZZ )
)  /\  q  e.  ZZ )  /\  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) ) )  /\  t  e.  ZZ )  /\  ( 0  <_  s  /\  s  <  ( abs `  D )  /\  N  =  ( ( t  x.  D )  +  s ) ) )  /\  q  =  t )  ->  r  e.  ZZ )
3917adantr 274 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  NN )  /\  (
r  e.  ZZ  /\  s  e.  ZZ )
)  /\  q  e.  ZZ )  /\  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) ) )  /\  t  e.  ZZ )  /\  ( 0  <_  s  /\  s  <  ( abs `  D )  /\  N  =  ( ( t  x.  D )  +  s ) ) )  /\  q  =  t )  ->  s  e.  ZZ )
4019adantr 274 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  NN )  /\  (
r  e.  ZZ  /\  s  e.  ZZ )
)  /\  q  e.  ZZ )  /\  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) ) )  /\  t  e.  ZZ )  /\  ( 0  <_  s  /\  s  <  ( abs `  D )  /\  N  =  ( ( t  x.  D )  +  s ) ) )  /\  q  =  t )  ->  q  e.  ZZ )
4120adantr 274 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  NN )  /\  (
r  e.  ZZ  /\  s  e.  ZZ )
)  /\  q  e.  ZZ )  /\  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) ) )  /\  t  e.  ZZ )  /\  ( 0  <_  s  /\  s  <  ( abs `  D )  /\  N  =  ( ( t  x.  D )  +  s ) ) )  /\  q  =  t )  ->  t  e.  ZZ )
42 simpr 109 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  NN )  /\  (
r  e.  ZZ  /\  s  e.  ZZ )
)  /\  q  e.  ZZ )  /\  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) ) )  /\  t  e.  ZZ )  /\  ( 0  <_  s  /\  s  <  ( abs `  D )  /\  N  =  ( ( t  x.  D )  +  s ) ) )  /\  q  =  t )  ->  q  =  t )
4332adantr 274 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  NN )  /\  (
r  e.  ZZ  /\  s  e.  ZZ )
)  /\  q  e.  ZZ )  /\  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) ) )  /\  t  e.  ZZ )  /\  ( 0  <_  s  /\  s  <  ( abs `  D )  /\  N  =  ( ( t  x.  D )  +  s ) ) )  /\  q  =  t )  ->  ( (
q  x.  D )  +  r )  =  ( ( t  x.  D )  +  s ) )
4437, 38, 39, 40, 41, 42, 43divalglemqt 11652 . . . . . . . . . . 11  |-  ( ( ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  NN )  /\  (
r  e.  ZZ  /\  s  e.  ZZ )
)  /\  q  e.  ZZ )  /\  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) ) )  /\  t  e.  ZZ )  /\  ( 0  <_  s  /\  s  <  ( abs `  D )  /\  N  =  ( ( t  x.  D )  +  s ) ) )  /\  q  =  t )  ->  r  =  s )
45 simpr 109 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  NN )  /\  (
r  e.  ZZ  /\  s  e.  ZZ )
)  /\  q  e.  ZZ )  /\  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) ) )  /\  t  e.  ZZ )  /\  ( 0  <_  s  /\  s  <  ( abs `  D )  /\  N  =  ( ( t  x.  D )  +  s ) ) )  /\  t  <  q
)  ->  t  <  q )
46 simpr1 988 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( N  e.  ZZ  /\  D  e.  NN )  /\  (
r  e.  ZZ  /\  s  e.  ZZ )
)  /\  q  e.  ZZ )  /\  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) ) )  -> 
0  <_  r )
4746ad2antrr 480 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  NN )  /\  ( r  e.  ZZ  /\  s  e.  ZZ ) )  /\  q  e.  ZZ )  /\  ( 0  <_  r  /\  r  <  ( abs `  D )  /\  N  =  ( ( q  x.  D )  +  r ) ) )  /\  t  e.  ZZ )  /\  ( 0  <_ 
s  /\  s  <  ( abs `  D )  /\  N  =  ( ( t  x.  D
)  +  s ) ) )  ->  0  <_  r )
48 simpr2 989 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  NN )  /\  ( r  e.  ZZ  /\  s  e.  ZZ ) )  /\  q  e.  ZZ )  /\  ( 0  <_  r  /\  r  <  ( abs `  D )  /\  N  =  ( ( q  x.  D )  +  r ) ) )  /\  t  e.  ZZ )  /\  ( 0  <_ 
s  /\  s  <  ( abs `  D )  /\  N  =  ( ( t  x.  D
)  +  s ) ) )  ->  s  <  ( abs `  D
) )
4948, 27breqtrd 3962 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  NN )  /\  ( r  e.  ZZ  /\  s  e.  ZZ ) )  /\  q  e.  ZZ )  /\  ( 0  <_  r  /\  r  <  ( abs `  D )  /\  N  =  ( ( q  x.  D )  +  r ) ) )  /\  t  e.  ZZ )  /\  ( 0  <_ 
s  /\  s  <  ( abs `  D )  /\  N  =  ( ( t  x.  D
)  +  s ) ) )  ->  s  <  D )
5031, 30eqtr3d 2175 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  NN )  /\  ( r  e.  ZZ  /\  s  e.  ZZ ) )  /\  q  e.  ZZ )  /\  ( 0  <_  r  /\  r  <  ( abs `  D )  /\  N  =  ( ( q  x.  D )  +  r ) ) )  /\  t  e.  ZZ )  /\  ( 0  <_ 
s  /\  s  <  ( abs `  D )  /\  N  =  ( ( t  x.  D
)  +  s ) ) )  ->  (
( t  x.  D
)  +  s )  =  ( ( q  x.  D )  +  r ) )
5113, 17, 15, 20, 19, 47, 49, 50divalglemnqt 11653 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  NN )  /\  ( r  e.  ZZ  /\  s  e.  ZZ ) )  /\  q  e.  ZZ )  /\  ( 0  <_  r  /\  r  <  ( abs `  D )  /\  N  =  ( ( q  x.  D )  +  r ) ) )  /\  t  e.  ZZ )  /\  ( 0  <_ 
s  /\  s  <  ( abs `  D )  /\  N  =  ( ( t  x.  D
)  +  s ) ) )  ->  -.  t  <  q )
5251adantr 274 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  NN )  /\  (
r  e.  ZZ  /\  s  e.  ZZ )
)  /\  q  e.  ZZ )  /\  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) ) )  /\  t  e.  ZZ )  /\  ( 0  <_  s  /\  s  <  ( abs `  D )  /\  N  =  ( ( t  x.  D )  +  s ) ) )  /\  t  <  q
)  ->  -.  t  <  q )
5345, 52pm2.21dd 610 . . . . . . . . . . 11  |-  ( ( ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  NN )  /\  (
r  e.  ZZ  /\  s  e.  ZZ )
)  /\  q  e.  ZZ )  /\  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) ) )  /\  t  e.  ZZ )  /\  ( 0  <_  s  /\  s  <  ( abs `  D )  /\  N  =  ( ( t  x.  D )  +  s ) ) )  /\  t  <  q
)  ->  r  =  s )
54 ztri3or 9121 . . . . . . . . . . . 12  |-  ( ( q  e.  ZZ  /\  t  e.  ZZ )  ->  ( q  <  t  \/  q  =  t  \/  t  <  q ) )
5519, 20, 54syl2anc 409 . . . . . . . . . . 11  |-  ( ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  NN )  /\  ( r  e.  ZZ  /\  s  e.  ZZ ) )  /\  q  e.  ZZ )  /\  ( 0  <_  r  /\  r  <  ( abs `  D )  /\  N  =  ( ( q  x.  D )  +  r ) ) )  /\  t  e.  ZZ )  /\  ( 0  <_ 
s  /\  s  <  ( abs `  D )  /\  N  =  ( ( t  x.  D
)  +  s ) ) )  ->  (
q  <  t  \/  q  =  t  \/  t  <  q ) )
5635, 44, 53, 55mpjao3dan 1286 . . . . . . . . . 10  |-  ( ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  NN )  /\  ( r  e.  ZZ  /\  s  e.  ZZ ) )  /\  q  e.  ZZ )  /\  ( 0  <_  r  /\  r  <  ( abs `  D )  /\  N  =  ( ( q  x.  D )  +  r ) ) )  /\  t  e.  ZZ )  /\  ( 0  <_ 
s  /\  s  <  ( abs `  D )  /\  N  =  ( ( t  x.  D
)  +  s ) ) )  ->  r  =  s )
5756ex 114 . . . . . . . . 9  |-  ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  NN )  /\  ( r  e.  ZZ  /\  s  e.  ZZ ) )  /\  q  e.  ZZ )  /\  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) ) )  /\  t  e.  ZZ )  ->  ( ( 0  <_ 
s  /\  s  <  ( abs `  D )  /\  N  =  ( ( t  x.  D
)  +  s ) )  ->  r  =  s ) )
5857rexlimdva 2552 . . . . . . . 8  |-  ( ( ( ( ( N  e.  ZZ  /\  D  e.  NN )  /\  (
r  e.  ZZ  /\  s  e.  ZZ )
)  /\  q  e.  ZZ )  /\  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) ) )  -> 
( E. t  e.  ZZ  ( 0  <_ 
s  /\  s  <  ( abs `  D )  /\  N  =  ( ( t  x.  D
)  +  s ) )  ->  r  =  s ) )
5910, 58syl5bi 151 . . . . . . 7  |-  ( ( ( ( ( N  e.  ZZ  /\  D  e.  NN )  /\  (
r  e.  ZZ  /\  s  e.  ZZ )
)  /\  q  e.  ZZ )  /\  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) ) )  -> 
( E. q  e.  ZZ  ( 0  <_ 
s  /\  s  <  ( abs `  D )  /\  N  =  ( ( q  x.  D
)  +  s ) )  ->  r  =  s ) )
6059exp31 362 . . . . . 6  |-  ( ( ( N  e.  ZZ  /\  D  e.  NN )  /\  ( r  e.  ZZ  /\  s  e.  ZZ ) )  -> 
( q  e.  ZZ  ->  ( ( 0  <_ 
r  /\  r  <  ( abs `  D )  /\  N  =  ( ( q  x.  D
)  +  r ) )  ->  ( E. q  e.  ZZ  (
0  <_  s  /\  s  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  s ) )  ->  r  =  s ) ) ) )
612, 5, 60rexlimd 2549 . . . . 5  |-  ( ( ( N  e.  ZZ  /\  D  e.  NN )  /\  ( r  e.  ZZ  /\  s  e.  ZZ ) )  -> 
( E. q  e.  ZZ  ( 0  <_ 
r  /\  r  <  ( abs `  D )  /\  N  =  ( ( q  x.  D
)  +  r ) )  ->  ( E. q  e.  ZZ  (
0  <_  s  /\  s  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  s ) )  ->  r  =  s ) ) )
6261impd 252 . . . 4  |-  ( ( ( N  e.  ZZ  /\  D  e.  NN )  /\  ( r  e.  ZZ  /\  s  e.  ZZ ) )  -> 
( ( E. q  e.  ZZ  ( 0  <_ 
r  /\  r  <  ( abs `  D )  /\  N  =  ( ( q  x.  D
)  +  r ) )  /\  E. q  e.  ZZ  ( 0  <_ 
s  /\  s  <  ( abs `  D )  /\  N  =  ( ( q  x.  D
)  +  s ) ) )  ->  r  =  s ) )
6362ralrimivva 2517 . . 3  |-  ( ( N  e.  ZZ  /\  D  e.  NN )  ->  A. r  e.  ZZ  A. s  e.  ZZ  (
( E. q  e.  ZZ  ( 0  <_ 
r  /\  r  <  ( abs `  D )  /\  N  =  ( ( q  x.  D
)  +  r ) )  /\  E. q  e.  ZZ  ( 0  <_ 
s  /\  s  <  ( abs `  D )  /\  N  =  ( ( q  x.  D
)  +  s ) ) )  ->  r  =  s ) )
64 breq2 3941 . . . . . 6  |-  ( r  =  s  ->  (
0  <_  r  <->  0  <_  s ) )
65 breq1 3940 . . . . . 6  |-  ( r  =  s  ->  (
r  <  ( abs `  D )  <->  s  <  ( abs `  D ) ) )
66 oveq2 5790 . . . . . . 7  |-  ( r  =  s  ->  (
( q  x.  D
)  +  r )  =  ( ( q  x.  D )  +  s ) )
6766eqeq2d 2152 . . . . . 6  |-  ( r  =  s  ->  ( N  =  ( (
q  x.  D )  +  r )  <->  N  =  ( ( q  x.  D )  +  s ) ) )
6864, 65, 673anbi123d 1291 . . . . 5  |-  ( r  =  s  ->  (
( 0  <_  r  /\  r  <  ( abs `  D )  /\  N  =  ( ( q  x.  D )  +  r ) )  <->  ( 0  <_  s  /\  s  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  s ) ) ) )
6968rexbidv 2439 . . . 4  |-  ( r  =  s  ->  ( E. q  e.  ZZ  ( 0  <_  r  /\  r  <  ( abs `  D )  /\  N  =  ( ( q  x.  D )  +  r ) )  <->  E. q  e.  ZZ  ( 0  <_ 
s  /\  s  <  ( abs `  D )  /\  N  =  ( ( q  x.  D
)  +  s ) ) ) )
7069rmo4 2881 . . 3  |-  ( E* r  e.  ZZ  E. q  e.  ZZ  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) )  <->  A. r  e.  ZZ  A. s  e.  ZZ  ( ( E. q  e.  ZZ  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) )  /\  E. q  e.  ZZ  (
0  <_  s  /\  s  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  s ) ) )  -> 
r  =  s ) )
7163, 70sylibr 133 . 2  |-  ( ( N  e.  ZZ  /\  D  e.  NN )  ->  E* r  e.  ZZ  E. q  e.  ZZ  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) ) )
72 reu5 2646 . 2  |-  ( E! r  e.  ZZ  E. q  e.  ZZ  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) )  <->  ( E. r  e.  ZZ  E. q  e.  ZZ  ( 0  <_ 
r  /\  r  <  ( abs `  D )  /\  N  =  ( ( q  x.  D
)  +  r ) )  /\  E* r  e.  ZZ  E. q  e.  ZZ  ( 0  <_ 
r  /\  r  <  ( abs `  D )  /\  N  =  ( ( q  x.  D
)  +  r ) ) ) )
731, 71, 72sylanbrc 414 1  |-  ( ( N  e.  ZZ  /\  D  e.  NN )  ->  E! r  e.  ZZ  E. q  e.  ZZ  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    \/ w3o 962    /\ w3a 963    = wceq 1332    e. wcel 1481   A.wral 2417   E.wrex 2418   E!wreu 2419   E*wrmo 2420   class class class wbr 3937   ` cfv 5131  (class class class)co 5782   0cc0 7644    + caddc 7647    x. cmul 7649    < clt 7824    <_ cle 7825   NNcn 8744   ZZcz 9078   abscabs 10801
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4051  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-iinf 4510  ax-cnex 7735  ax-resscn 7736  ax-1cn 7737  ax-1re 7738  ax-icn 7739  ax-addcl 7740  ax-addrcl 7741  ax-mulcl 7742  ax-mulrcl 7743  ax-addcom 7744  ax-mulcom 7745  ax-addass 7746  ax-mulass 7747  ax-distr 7748  ax-i2m1 7749  ax-0lt1 7750  ax-1rid 7751  ax-0id 7752  ax-rnegex 7753  ax-precex 7754  ax-cnre 7755  ax-pre-ltirr 7756  ax-pre-ltwlin 7757  ax-pre-lttrn 7758  ax-pre-apti 7759  ax-pre-ltadd 7760  ax-pre-mulgt0 7761  ax-pre-mulext 7762  ax-arch 7763
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rmo 2425  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-if 3480  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-tr 4035  df-id 4223  df-po 4226  df-iso 4227  df-iord 4296  df-on 4298  df-ilim 4299  df-suc 4301  df-iom 4513  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-riota 5738  df-ov 5785  df-oprab 5786  df-mpo 5787  df-1st 6046  df-2nd 6047  df-recs 6210  df-frec 6296  df-pnf 7826  df-mnf 7827  df-xr 7828  df-ltxr 7829  df-le 7830  df-sub 7959  df-neg 7960  df-reap 8361  df-ap 8368  df-div 8457  df-inn 8745  df-2 8803  df-n0 9002  df-z 9079  df-uz 9351  df-q 9439  df-rp 9471  df-fl 10074  df-mod 10127  df-seqfrec 10250  df-exp 10324  df-cj 10646  df-re 10647  df-im 10648  df-rsqrt 10802  df-abs 10803
This theorem is referenced by:  divalg  11657
  Copyright terms: Public domain W3C validator