ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  divalglemeunn Unicode version

Theorem divalglemeunn 11618
Description: Lemma for divalg 11621. Uniqueness for a positive denominator. (Contributed by Jim Kingdon, 4-Dec-2021.)
Assertion
Ref Expression
divalglemeunn  |-  ( ( N  e.  ZZ  /\  D  e.  NN )  ->  E! r  e.  ZZ  E. q  e.  ZZ  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) ) )
Distinct variable groups:    D, q, r    N, q, r

Proof of Theorem divalglemeunn
Dummy variables  s  t are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 divalglemnn 11615 . 2  |-  ( ( N  e.  ZZ  /\  D  e.  NN )  ->  E. r  e.  ZZ  E. q  e.  ZZ  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) ) )
2 nfv 1508 . . . . . 6  |-  F/ q ( ( N  e.  ZZ  /\  D  e.  NN )  /\  (
r  e.  ZZ  /\  s  e.  ZZ )
)
3 nfre1 2476 . . . . . . 7  |-  F/ q E. q  e.  ZZ  ( 0  <_  s  /\  s  <  ( abs `  D )  /\  N  =  ( ( q  x.  D )  +  s ) )
4 nfv 1508 . . . . . . 7  |-  F/ q  r  =  s
53, 4nfim 1551 . . . . . 6  |-  F/ q ( E. q  e.  ZZ  ( 0  <_ 
s  /\  s  <  ( abs `  D )  /\  N  =  ( ( q  x.  D
)  +  s ) )  ->  r  =  s )
6 oveq1 5781 . . . . . . . . . . . 12  |-  ( q  =  t  ->  (
q  x.  D )  =  ( t  x.  D ) )
76oveq1d 5789 . . . . . . . . . . 11  |-  ( q  =  t  ->  (
( q  x.  D
)  +  s )  =  ( ( t  x.  D )  +  s ) )
87eqeq2d 2151 . . . . . . . . . 10  |-  ( q  =  t  ->  ( N  =  ( (
q  x.  D )  +  s )  <->  N  =  ( ( t  x.  D )  +  s ) ) )
983anbi3d 1296 . . . . . . . . 9  |-  ( q  =  t  ->  (
( 0  <_  s  /\  s  <  ( abs `  D )  /\  N  =  ( ( q  x.  D )  +  s ) )  <->  ( 0  <_  s  /\  s  <  ( abs `  D
)  /\  N  =  ( ( t  x.  D )  +  s ) ) ) )
109cbvrexv 2655 . . . . . . . 8  |-  ( E. q  e.  ZZ  (
0  <_  s  /\  s  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  s ) )  <->  E. t  e.  ZZ  ( 0  <_ 
s  /\  s  <  ( abs `  D )  /\  N  =  ( ( t  x.  D
)  +  s ) ) )
11 simpr 109 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  NN )  /\  (
r  e.  ZZ  /\  s  e.  ZZ )
)  /\  q  e.  ZZ )  /\  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) ) )  /\  t  e.  ZZ )  /\  ( 0  <_  s  /\  s  <  ( abs `  D )  /\  N  =  ( ( t  x.  D )  +  s ) ) )  /\  q  <  t
)  ->  q  <  t )
12 simplr 519 . . . . . . . . . . . . . . 15  |-  ( ( ( N  e.  ZZ  /\  D  e.  NN )  /\  ( r  e.  ZZ  /\  s  e.  ZZ ) )  ->  D  e.  NN )
1312ad4antr 485 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  NN )  /\  ( r  e.  ZZ  /\  s  e.  ZZ ) )  /\  q  e.  ZZ )  /\  ( 0  <_  r  /\  r  <  ( abs `  D )  /\  N  =  ( ( q  x.  D )  +  r ) ) )  /\  t  e.  ZZ )  /\  ( 0  <_ 
s  /\  s  <  ( abs `  D )  /\  N  =  ( ( t  x.  D
)  +  s ) ) )  ->  D  e.  NN )
14 simplrl 524 . . . . . . . . . . . . . . 15  |-  ( ( ( ( N  e.  ZZ  /\  D  e.  NN )  /\  (
r  e.  ZZ  /\  s  e.  ZZ )
)  /\  q  e.  ZZ )  ->  r  e.  ZZ )
1514ad3antrrr 483 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  NN )  /\  ( r  e.  ZZ  /\  s  e.  ZZ ) )  /\  q  e.  ZZ )  /\  ( 0  <_  r  /\  r  <  ( abs `  D )  /\  N  =  ( ( q  x.  D )  +  r ) ) )  /\  t  e.  ZZ )  /\  ( 0  <_ 
s  /\  s  <  ( abs `  D )  /\  N  =  ( ( t  x.  D
)  +  s ) ) )  ->  r  e.  ZZ )
16 simplrr 525 . . . . . . . . . . . . . . 15  |-  ( ( ( ( N  e.  ZZ  /\  D  e.  NN )  /\  (
r  e.  ZZ  /\  s  e.  ZZ )
)  /\  q  e.  ZZ )  ->  s  e.  ZZ )
1716ad3antrrr 483 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  NN )  /\  ( r  e.  ZZ  /\  s  e.  ZZ ) )  /\  q  e.  ZZ )  /\  ( 0  <_  r  /\  r  <  ( abs `  D )  /\  N  =  ( ( q  x.  D )  +  r ) ) )  /\  t  e.  ZZ )  /\  ( 0  <_ 
s  /\  s  <  ( abs `  D )  /\  N  =  ( ( t  x.  D
)  +  s ) ) )  ->  s  e.  ZZ )
18 simpr 109 . . . . . . . . . . . . . . 15  |-  ( ( ( ( N  e.  ZZ  /\  D  e.  NN )  /\  (
r  e.  ZZ  /\  s  e.  ZZ )
)  /\  q  e.  ZZ )  ->  q  e.  ZZ )
1918ad3antrrr 483 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  NN )  /\  ( r  e.  ZZ  /\  s  e.  ZZ ) )  /\  q  e.  ZZ )  /\  ( 0  <_  r  /\  r  <  ( abs `  D )  /\  N  =  ( ( q  x.  D )  +  r ) ) )  /\  t  e.  ZZ )  /\  ( 0  <_ 
s  /\  s  <  ( abs `  D )  /\  N  =  ( ( t  x.  D
)  +  s ) ) )  ->  q  e.  ZZ )
20 simplr 519 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  NN )  /\  ( r  e.  ZZ  /\  s  e.  ZZ ) )  /\  q  e.  ZZ )  /\  ( 0  <_  r  /\  r  <  ( abs `  D )  /\  N  =  ( ( q  x.  D )  +  r ) ) )  /\  t  e.  ZZ )  /\  ( 0  <_ 
s  /\  s  <  ( abs `  D )  /\  N  =  ( ( t  x.  D
)  +  s ) ) )  ->  t  e.  ZZ )
21 simpr1 987 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  NN )  /\  ( r  e.  ZZ  /\  s  e.  ZZ ) )  /\  q  e.  ZZ )  /\  ( 0  <_  r  /\  r  <  ( abs `  D )  /\  N  =  ( ( q  x.  D )  +  r ) ) )  /\  t  e.  ZZ )  /\  ( 0  <_ 
s  /\  s  <  ( abs `  D )  /\  N  =  ( ( t  x.  D
)  +  s ) ) )  ->  0  <_  s )
22 simpr2 988 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( N  e.  ZZ  /\  D  e.  NN )  /\  (
r  e.  ZZ  /\  s  e.  ZZ )
)  /\  q  e.  ZZ )  /\  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) ) )  -> 
r  <  ( abs `  D ) )
2322ad2antrr 479 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  NN )  /\  ( r  e.  ZZ  /\  s  e.  ZZ ) )  /\  q  e.  ZZ )  /\  ( 0  <_  r  /\  r  <  ( abs `  D )  /\  N  =  ( ( q  x.  D )  +  r ) ) )  /\  t  e.  ZZ )  /\  ( 0  <_ 
s  /\  s  <  ( abs `  D )  /\  N  =  ( ( t  x.  D
)  +  s ) ) )  ->  r  <  ( abs `  D
) )
2413nnred 8733 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  NN )  /\  ( r  e.  ZZ  /\  s  e.  ZZ ) )  /\  q  e.  ZZ )  /\  ( 0  <_  r  /\  r  <  ( abs `  D )  /\  N  =  ( ( q  x.  D )  +  r ) ) )  /\  t  e.  ZZ )  /\  ( 0  <_ 
s  /\  s  <  ( abs `  D )  /\  N  =  ( ( t  x.  D
)  +  s ) ) )  ->  D  e.  RR )
2513nnnn0d 9030 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  NN )  /\  ( r  e.  ZZ  /\  s  e.  ZZ ) )  /\  q  e.  ZZ )  /\  ( 0  <_  r  /\  r  <  ( abs `  D )  /\  N  =  ( ( q  x.  D )  +  r ) ) )  /\  t  e.  ZZ )  /\  ( 0  <_ 
s  /\  s  <  ( abs `  D )  /\  N  =  ( ( t  x.  D
)  +  s ) ) )  ->  D  e.  NN0 )
2625nn0ge0d 9033 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  NN )  /\  ( r  e.  ZZ  /\  s  e.  ZZ ) )  /\  q  e.  ZZ )  /\  ( 0  <_  r  /\  r  <  ( abs `  D )  /\  N  =  ( ( q  x.  D )  +  r ) ) )  /\  t  e.  ZZ )  /\  ( 0  <_ 
s  /\  s  <  ( abs `  D )  /\  N  =  ( ( t  x.  D
)  +  s ) ) )  ->  0  <_  D )
2724, 26absidd 10939 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  NN )  /\  ( r  e.  ZZ  /\  s  e.  ZZ ) )  /\  q  e.  ZZ )  /\  ( 0  <_  r  /\  r  <  ( abs `  D )  /\  N  =  ( ( q  x.  D )  +  r ) ) )  /\  t  e.  ZZ )  /\  ( 0  <_ 
s  /\  s  <  ( abs `  D )  /\  N  =  ( ( t  x.  D
)  +  s ) ) )  ->  ( abs `  D )  =  D )
2823, 27breqtrd 3954 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  NN )  /\  ( r  e.  ZZ  /\  s  e.  ZZ ) )  /\  q  e.  ZZ )  /\  ( 0  <_  r  /\  r  <  ( abs `  D )  /\  N  =  ( ( q  x.  D )  +  r ) ) )  /\  t  e.  ZZ )  /\  ( 0  <_ 
s  /\  s  <  ( abs `  D )  /\  N  =  ( ( t  x.  D
)  +  s ) ) )  ->  r  <  D )
29 simpr3 989 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( N  e.  ZZ  /\  D  e.  NN )  /\  (
r  e.  ZZ  /\  s  e.  ZZ )
)  /\  q  e.  ZZ )  /\  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) ) )  ->  N  =  ( (
q  x.  D )  +  r ) )
3029ad2antrr 479 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  NN )  /\  ( r  e.  ZZ  /\  s  e.  ZZ ) )  /\  q  e.  ZZ )  /\  ( 0  <_  r  /\  r  <  ( abs `  D )  /\  N  =  ( ( q  x.  D )  +  r ) ) )  /\  t  e.  ZZ )  /\  ( 0  <_ 
s  /\  s  <  ( abs `  D )  /\  N  =  ( ( t  x.  D
)  +  s ) ) )  ->  N  =  ( ( q  x.  D )  +  r ) )
31 simpr3 989 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  NN )  /\  ( r  e.  ZZ  /\  s  e.  ZZ ) )  /\  q  e.  ZZ )  /\  ( 0  <_  r  /\  r  <  ( abs `  D )  /\  N  =  ( ( q  x.  D )  +  r ) ) )  /\  t  e.  ZZ )  /\  ( 0  <_ 
s  /\  s  <  ( abs `  D )  /\  N  =  ( ( t  x.  D
)  +  s ) ) )  ->  N  =  ( ( t  x.  D )  +  s ) )
3230, 31eqtr3d 2174 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  NN )  /\  ( r  e.  ZZ  /\  s  e.  ZZ ) )  /\  q  e.  ZZ )  /\  ( 0  <_  r  /\  r  <  ( abs `  D )  /\  N  =  ( ( q  x.  D )  +  r ) ) )  /\  t  e.  ZZ )  /\  ( 0  <_ 
s  /\  s  <  ( abs `  D )  /\  N  =  ( ( t  x.  D
)  +  s ) ) )  ->  (
( q  x.  D
)  +  r )  =  ( ( t  x.  D )  +  s ) )
3313, 15, 17, 19, 20, 21, 28, 32divalglemnqt 11617 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  NN )  /\  ( r  e.  ZZ  /\  s  e.  ZZ ) )  /\  q  e.  ZZ )  /\  ( 0  <_  r  /\  r  <  ( abs `  D )  /\  N  =  ( ( q  x.  D )  +  r ) ) )  /\  t  e.  ZZ )  /\  ( 0  <_ 
s  /\  s  <  ( abs `  D )  /\  N  =  ( ( t  x.  D
)  +  s ) ) )  ->  -.  q  <  t )
3433adantr 274 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  NN )  /\  (
r  e.  ZZ  /\  s  e.  ZZ )
)  /\  q  e.  ZZ )  /\  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) ) )  /\  t  e.  ZZ )  /\  ( 0  <_  s  /\  s  <  ( abs `  D )  /\  N  =  ( ( t  x.  D )  +  s ) ) )  /\  q  <  t
)  ->  -.  q  <  t )
3511, 34pm2.21dd 609 . . . . . . . . . . 11  |-  ( ( ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  NN )  /\  (
r  e.  ZZ  /\  s  e.  ZZ )
)  /\  q  e.  ZZ )  /\  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) ) )  /\  t  e.  ZZ )  /\  ( 0  <_  s  /\  s  <  ( abs `  D )  /\  N  =  ( ( t  x.  D )  +  s ) ) )  /\  q  <  t
)  ->  r  =  s )
3613adantr 274 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  NN )  /\  (
r  e.  ZZ  /\  s  e.  ZZ )
)  /\  q  e.  ZZ )  /\  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) ) )  /\  t  e.  ZZ )  /\  ( 0  <_  s  /\  s  <  ( abs `  D )  /\  N  =  ( ( t  x.  D )  +  s ) ) )  /\  q  =  t )  ->  D  e.  NN )
3736nnzd 9172 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  NN )  /\  (
r  e.  ZZ  /\  s  e.  ZZ )
)  /\  q  e.  ZZ )  /\  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) ) )  /\  t  e.  ZZ )  /\  ( 0  <_  s  /\  s  <  ( abs `  D )  /\  N  =  ( ( t  x.  D )  +  s ) ) )  /\  q  =  t )  ->  D  e.  ZZ )
3815adantr 274 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  NN )  /\  (
r  e.  ZZ  /\  s  e.  ZZ )
)  /\  q  e.  ZZ )  /\  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) ) )  /\  t  e.  ZZ )  /\  ( 0  <_  s  /\  s  <  ( abs `  D )  /\  N  =  ( ( t  x.  D )  +  s ) ) )  /\  q  =  t )  ->  r  e.  ZZ )
3917adantr 274 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  NN )  /\  (
r  e.  ZZ  /\  s  e.  ZZ )
)  /\  q  e.  ZZ )  /\  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) ) )  /\  t  e.  ZZ )  /\  ( 0  <_  s  /\  s  <  ( abs `  D )  /\  N  =  ( ( t  x.  D )  +  s ) ) )  /\  q  =  t )  ->  s  e.  ZZ )
4019adantr 274 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  NN )  /\  (
r  e.  ZZ  /\  s  e.  ZZ )
)  /\  q  e.  ZZ )  /\  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) ) )  /\  t  e.  ZZ )  /\  ( 0  <_  s  /\  s  <  ( abs `  D )  /\  N  =  ( ( t  x.  D )  +  s ) ) )  /\  q  =  t )  ->  q  e.  ZZ )
4120adantr 274 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  NN )  /\  (
r  e.  ZZ  /\  s  e.  ZZ )
)  /\  q  e.  ZZ )  /\  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) ) )  /\  t  e.  ZZ )  /\  ( 0  <_  s  /\  s  <  ( abs `  D )  /\  N  =  ( ( t  x.  D )  +  s ) ) )  /\  q  =  t )  ->  t  e.  ZZ )
42 simpr 109 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  NN )  /\  (
r  e.  ZZ  /\  s  e.  ZZ )
)  /\  q  e.  ZZ )  /\  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) ) )  /\  t  e.  ZZ )  /\  ( 0  <_  s  /\  s  <  ( abs `  D )  /\  N  =  ( ( t  x.  D )  +  s ) ) )  /\  q  =  t )  ->  q  =  t )
4332adantr 274 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  NN )  /\  (
r  e.  ZZ  /\  s  e.  ZZ )
)  /\  q  e.  ZZ )  /\  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) ) )  /\  t  e.  ZZ )  /\  ( 0  <_  s  /\  s  <  ( abs `  D )  /\  N  =  ( ( t  x.  D )  +  s ) ) )  /\  q  =  t )  ->  ( (
q  x.  D )  +  r )  =  ( ( t  x.  D )  +  s ) )
4437, 38, 39, 40, 41, 42, 43divalglemqt 11616 . . . . . . . . . . 11  |-  ( ( ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  NN )  /\  (
r  e.  ZZ  /\  s  e.  ZZ )
)  /\  q  e.  ZZ )  /\  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) ) )  /\  t  e.  ZZ )  /\  ( 0  <_  s  /\  s  <  ( abs `  D )  /\  N  =  ( ( t  x.  D )  +  s ) ) )  /\  q  =  t )  ->  r  =  s )
45 simpr 109 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  NN )  /\  (
r  e.  ZZ  /\  s  e.  ZZ )
)  /\  q  e.  ZZ )  /\  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) ) )  /\  t  e.  ZZ )  /\  ( 0  <_  s  /\  s  <  ( abs `  D )  /\  N  =  ( ( t  x.  D )  +  s ) ) )  /\  t  <  q
)  ->  t  <  q )
46 simpr1 987 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( N  e.  ZZ  /\  D  e.  NN )  /\  (
r  e.  ZZ  /\  s  e.  ZZ )
)  /\  q  e.  ZZ )  /\  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) ) )  -> 
0  <_  r )
4746ad2antrr 479 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  NN )  /\  ( r  e.  ZZ  /\  s  e.  ZZ ) )  /\  q  e.  ZZ )  /\  ( 0  <_  r  /\  r  <  ( abs `  D )  /\  N  =  ( ( q  x.  D )  +  r ) ) )  /\  t  e.  ZZ )  /\  ( 0  <_ 
s  /\  s  <  ( abs `  D )  /\  N  =  ( ( t  x.  D
)  +  s ) ) )  ->  0  <_  r )
48 simpr2 988 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  NN )  /\  ( r  e.  ZZ  /\  s  e.  ZZ ) )  /\  q  e.  ZZ )  /\  ( 0  <_  r  /\  r  <  ( abs `  D )  /\  N  =  ( ( q  x.  D )  +  r ) ) )  /\  t  e.  ZZ )  /\  ( 0  <_ 
s  /\  s  <  ( abs `  D )  /\  N  =  ( ( t  x.  D
)  +  s ) ) )  ->  s  <  ( abs `  D
) )
4948, 27breqtrd 3954 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  NN )  /\  ( r  e.  ZZ  /\  s  e.  ZZ ) )  /\  q  e.  ZZ )  /\  ( 0  <_  r  /\  r  <  ( abs `  D )  /\  N  =  ( ( q  x.  D )  +  r ) ) )  /\  t  e.  ZZ )  /\  ( 0  <_ 
s  /\  s  <  ( abs `  D )  /\  N  =  ( ( t  x.  D
)  +  s ) ) )  ->  s  <  D )
5031, 30eqtr3d 2174 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  NN )  /\  ( r  e.  ZZ  /\  s  e.  ZZ ) )  /\  q  e.  ZZ )  /\  ( 0  <_  r  /\  r  <  ( abs `  D )  /\  N  =  ( ( q  x.  D )  +  r ) ) )  /\  t  e.  ZZ )  /\  ( 0  <_ 
s  /\  s  <  ( abs `  D )  /\  N  =  ( ( t  x.  D
)  +  s ) ) )  ->  (
( t  x.  D
)  +  s )  =  ( ( q  x.  D )  +  r ) )
5113, 17, 15, 20, 19, 47, 49, 50divalglemnqt 11617 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  NN )  /\  ( r  e.  ZZ  /\  s  e.  ZZ ) )  /\  q  e.  ZZ )  /\  ( 0  <_  r  /\  r  <  ( abs `  D )  /\  N  =  ( ( q  x.  D )  +  r ) ) )  /\  t  e.  ZZ )  /\  ( 0  <_ 
s  /\  s  <  ( abs `  D )  /\  N  =  ( ( t  x.  D
)  +  s ) ) )  ->  -.  t  <  q )
5251adantr 274 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  NN )  /\  (
r  e.  ZZ  /\  s  e.  ZZ )
)  /\  q  e.  ZZ )  /\  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) ) )  /\  t  e.  ZZ )  /\  ( 0  <_  s  /\  s  <  ( abs `  D )  /\  N  =  ( ( t  x.  D )  +  s ) ) )  /\  t  <  q
)  ->  -.  t  <  q )
5345, 52pm2.21dd 609 . . . . . . . . . . 11  |-  ( ( ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  NN )  /\  (
r  e.  ZZ  /\  s  e.  ZZ )
)  /\  q  e.  ZZ )  /\  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) ) )  /\  t  e.  ZZ )  /\  ( 0  <_  s  /\  s  <  ( abs `  D )  /\  N  =  ( ( t  x.  D )  +  s ) ) )  /\  t  <  q
)  ->  r  =  s )
54 ztri3or 9097 . . . . . . . . . . . 12  |-  ( ( q  e.  ZZ  /\  t  e.  ZZ )  ->  ( q  <  t  \/  q  =  t  \/  t  <  q ) )
5519, 20, 54syl2anc 408 . . . . . . . . . . 11  |-  ( ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  NN )  /\  ( r  e.  ZZ  /\  s  e.  ZZ ) )  /\  q  e.  ZZ )  /\  ( 0  <_  r  /\  r  <  ( abs `  D )  /\  N  =  ( ( q  x.  D )  +  r ) ) )  /\  t  e.  ZZ )  /\  ( 0  <_ 
s  /\  s  <  ( abs `  D )  /\  N  =  ( ( t  x.  D
)  +  s ) ) )  ->  (
q  <  t  \/  q  =  t  \/  t  <  q ) )
5635, 44, 53, 55mpjao3dan 1285 . . . . . . . . . 10  |-  ( ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  NN )  /\  ( r  e.  ZZ  /\  s  e.  ZZ ) )  /\  q  e.  ZZ )  /\  ( 0  <_  r  /\  r  <  ( abs `  D )  /\  N  =  ( ( q  x.  D )  +  r ) ) )  /\  t  e.  ZZ )  /\  ( 0  <_ 
s  /\  s  <  ( abs `  D )  /\  N  =  ( ( t  x.  D
)  +  s ) ) )  ->  r  =  s )
5756ex 114 . . . . . . . . 9  |-  ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  NN )  /\  ( r  e.  ZZ  /\  s  e.  ZZ ) )  /\  q  e.  ZZ )  /\  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) ) )  /\  t  e.  ZZ )  ->  ( ( 0  <_ 
s  /\  s  <  ( abs `  D )  /\  N  =  ( ( t  x.  D
)  +  s ) )  ->  r  =  s ) )
5857rexlimdva 2549 . . . . . . . 8  |-  ( ( ( ( ( N  e.  ZZ  /\  D  e.  NN )  /\  (
r  e.  ZZ  /\  s  e.  ZZ )
)  /\  q  e.  ZZ )  /\  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) ) )  -> 
( E. t  e.  ZZ  ( 0  <_ 
s  /\  s  <  ( abs `  D )  /\  N  =  ( ( t  x.  D
)  +  s ) )  ->  r  =  s ) )
5910, 58syl5bi 151 . . . . . . 7  |-  ( ( ( ( ( N  e.  ZZ  /\  D  e.  NN )  /\  (
r  e.  ZZ  /\  s  e.  ZZ )
)  /\  q  e.  ZZ )  /\  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) ) )  -> 
( E. q  e.  ZZ  ( 0  <_ 
s  /\  s  <  ( abs `  D )  /\  N  =  ( ( q  x.  D
)  +  s ) )  ->  r  =  s ) )
6059exp31 361 . . . . . 6  |-  ( ( ( N  e.  ZZ  /\  D  e.  NN )  /\  ( r  e.  ZZ  /\  s  e.  ZZ ) )  -> 
( q  e.  ZZ  ->  ( ( 0  <_ 
r  /\  r  <  ( abs `  D )  /\  N  =  ( ( q  x.  D
)  +  r ) )  ->  ( E. q  e.  ZZ  (
0  <_  s  /\  s  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  s ) )  ->  r  =  s ) ) ) )
612, 5, 60rexlimd 2546 . . . . 5  |-  ( ( ( N  e.  ZZ  /\  D  e.  NN )  /\  ( r  e.  ZZ  /\  s  e.  ZZ ) )  -> 
( E. q  e.  ZZ  ( 0  <_ 
r  /\  r  <  ( abs `  D )  /\  N  =  ( ( q  x.  D
)  +  r ) )  ->  ( E. q  e.  ZZ  (
0  <_  s  /\  s  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  s ) )  ->  r  =  s ) ) )
6261impd 252 . . . 4  |-  ( ( ( N  e.  ZZ  /\  D  e.  NN )  /\  ( r  e.  ZZ  /\  s  e.  ZZ ) )  -> 
( ( E. q  e.  ZZ  ( 0  <_ 
r  /\  r  <  ( abs `  D )  /\  N  =  ( ( q  x.  D
)  +  r ) )  /\  E. q  e.  ZZ  ( 0  <_ 
s  /\  s  <  ( abs `  D )  /\  N  =  ( ( q  x.  D
)  +  s ) ) )  ->  r  =  s ) )
6362ralrimivva 2514 . . 3  |-  ( ( N  e.  ZZ  /\  D  e.  NN )  ->  A. r  e.  ZZ  A. s  e.  ZZ  (
( E. q  e.  ZZ  ( 0  <_ 
r  /\  r  <  ( abs `  D )  /\  N  =  ( ( q  x.  D
)  +  r ) )  /\  E. q  e.  ZZ  ( 0  <_ 
s  /\  s  <  ( abs `  D )  /\  N  =  ( ( q  x.  D
)  +  s ) ) )  ->  r  =  s ) )
64 breq2 3933 . . . . . 6  |-  ( r  =  s  ->  (
0  <_  r  <->  0  <_  s ) )
65 breq1 3932 . . . . . 6  |-  ( r  =  s  ->  (
r  <  ( abs `  D )  <->  s  <  ( abs `  D ) ) )
66 oveq2 5782 . . . . . . 7  |-  ( r  =  s  ->  (
( q  x.  D
)  +  r )  =  ( ( q  x.  D )  +  s ) )
6766eqeq2d 2151 . . . . . 6  |-  ( r  =  s  ->  ( N  =  ( (
q  x.  D )  +  r )  <->  N  =  ( ( q  x.  D )  +  s ) ) )
6864, 65, 673anbi123d 1290 . . . . 5  |-  ( r  =  s  ->  (
( 0  <_  r  /\  r  <  ( abs `  D )  /\  N  =  ( ( q  x.  D )  +  r ) )  <->  ( 0  <_  s  /\  s  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  s ) ) ) )
6968rexbidv 2438 . . . 4  |-  ( r  =  s  ->  ( E. q  e.  ZZ  ( 0  <_  r  /\  r  <  ( abs `  D )  /\  N  =  ( ( q  x.  D )  +  r ) )  <->  E. q  e.  ZZ  ( 0  <_ 
s  /\  s  <  ( abs `  D )  /\  N  =  ( ( q  x.  D
)  +  s ) ) ) )
7069rmo4 2877 . . 3  |-  ( E* r  e.  ZZ  E. q  e.  ZZ  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) )  <->  A. r  e.  ZZ  A. s  e.  ZZ  ( ( E. q  e.  ZZ  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) )  /\  E. q  e.  ZZ  (
0  <_  s  /\  s  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  s ) ) )  -> 
r  =  s ) )
7163, 70sylibr 133 . 2  |-  ( ( N  e.  ZZ  /\  D  e.  NN )  ->  E* r  e.  ZZ  E. q  e.  ZZ  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) ) )
72 reu5 2643 . 2  |-  ( E! r  e.  ZZ  E. q  e.  ZZ  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) )  <->  ( E. r  e.  ZZ  E. q  e.  ZZ  ( 0  <_ 
r  /\  r  <  ( abs `  D )  /\  N  =  ( ( q  x.  D
)  +  r ) )  /\  E* r  e.  ZZ  E. q  e.  ZZ  ( 0  <_ 
r  /\  r  <  ( abs `  D )  /\  N  =  ( ( q  x.  D
)  +  r ) ) ) )
731, 71, 72sylanbrc 413 1  |-  ( ( N  e.  ZZ  /\  D  e.  NN )  ->  E! r  e.  ZZ  E. q  e.  ZZ  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    \/ w3o 961    /\ w3a 962    = wceq 1331    e. wcel 1480   A.wral 2416   E.wrex 2417   E!wreu 2418   E*wrmo 2419   class class class wbr 3929   ` cfv 5123  (class class class)co 5774   0cc0 7620    + caddc 7623    x. cmul 7625    < clt 7800    <_ cle 7801   NNcn 8720   ZZcz 9054   abscabs 10769
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-mulrcl 7719  ax-addcom 7720  ax-mulcom 7721  ax-addass 7722  ax-mulass 7723  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-1rid 7727  ax-0id 7728  ax-rnegex 7729  ax-precex 7730  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-apti 7735  ax-pre-ltadd 7736  ax-pre-mulgt0 7737  ax-pre-mulext 7738  ax-arch 7739
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-frec 6288  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-reap 8337  df-ap 8344  df-div 8433  df-inn 8721  df-2 8779  df-n0 8978  df-z 9055  df-uz 9327  df-q 9412  df-rp 9442  df-fl 10043  df-mod 10096  df-seqfrec 10219  df-exp 10293  df-cj 10614  df-re 10615  df-im 10616  df-rsqrt 10770  df-abs 10771
This theorem is referenced by:  divalg  11621
  Copyright terms: Public domain W3C validator