ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  divalglemeunn Unicode version

Theorem divalglemeunn 12103
Description: Lemma for divalg 12106. Uniqueness for a positive denominator. (Contributed by Jim Kingdon, 4-Dec-2021.)
Assertion
Ref Expression
divalglemeunn  |-  ( ( N  e.  ZZ  /\  D  e.  NN )  ->  E! r  e.  ZZ  E. q  e.  ZZ  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) ) )
Distinct variable groups:    D, q, r    N, q, r

Proof of Theorem divalglemeunn
Dummy variables  s  t are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 divalglemnn 12100 . 2  |-  ( ( N  e.  ZZ  /\  D  e.  NN )  ->  E. r  e.  ZZ  E. q  e.  ZZ  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) ) )
2 nfv 1542 . . . . . 6  |-  F/ q ( ( N  e.  ZZ  /\  D  e.  NN )  /\  (
r  e.  ZZ  /\  s  e.  ZZ )
)
3 nfre1 2540 . . . . . . 7  |-  F/ q E. q  e.  ZZ  ( 0  <_  s  /\  s  <  ( abs `  D )  /\  N  =  ( ( q  x.  D )  +  s ) )
4 nfv 1542 . . . . . . 7  |-  F/ q  r  =  s
53, 4nfim 1586 . . . . . 6  |-  F/ q ( E. q  e.  ZZ  ( 0  <_ 
s  /\  s  <  ( abs `  D )  /\  N  =  ( ( q  x.  D
)  +  s ) )  ->  r  =  s )
6 oveq1 5932 . . . . . . . . . . . 12  |-  ( q  =  t  ->  (
q  x.  D )  =  ( t  x.  D ) )
76oveq1d 5940 . . . . . . . . . . 11  |-  ( q  =  t  ->  (
( q  x.  D
)  +  s )  =  ( ( t  x.  D )  +  s ) )
87eqeq2d 2208 . . . . . . . . . 10  |-  ( q  =  t  ->  ( N  =  ( (
q  x.  D )  +  s )  <->  N  =  ( ( t  x.  D )  +  s ) ) )
983anbi3d 1329 . . . . . . . . 9  |-  ( q  =  t  ->  (
( 0  <_  s  /\  s  <  ( abs `  D )  /\  N  =  ( ( q  x.  D )  +  s ) )  <->  ( 0  <_  s  /\  s  <  ( abs `  D
)  /\  N  =  ( ( t  x.  D )  +  s ) ) ) )
109cbvrexv 2730 . . . . . . . 8  |-  ( E. q  e.  ZZ  (
0  <_  s  /\  s  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  s ) )  <->  E. t  e.  ZZ  ( 0  <_ 
s  /\  s  <  ( abs `  D )  /\  N  =  ( ( t  x.  D
)  +  s ) ) )
11 simpr 110 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  NN )  /\  (
r  e.  ZZ  /\  s  e.  ZZ )
)  /\  q  e.  ZZ )  /\  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) ) )  /\  t  e.  ZZ )  /\  ( 0  <_  s  /\  s  <  ( abs `  D )  /\  N  =  ( ( t  x.  D )  +  s ) ) )  /\  q  <  t
)  ->  q  <  t )
12 simplr 528 . . . . . . . . . . . . . . 15  |-  ( ( ( N  e.  ZZ  /\  D  e.  NN )  /\  ( r  e.  ZZ  /\  s  e.  ZZ ) )  ->  D  e.  NN )
1312ad4antr 494 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  NN )  /\  ( r  e.  ZZ  /\  s  e.  ZZ ) )  /\  q  e.  ZZ )  /\  ( 0  <_  r  /\  r  <  ( abs `  D )  /\  N  =  ( ( q  x.  D )  +  r ) ) )  /\  t  e.  ZZ )  /\  ( 0  <_ 
s  /\  s  <  ( abs `  D )  /\  N  =  ( ( t  x.  D
)  +  s ) ) )  ->  D  e.  NN )
14 simplrl 535 . . . . . . . . . . . . . . 15  |-  ( ( ( ( N  e.  ZZ  /\  D  e.  NN )  /\  (
r  e.  ZZ  /\  s  e.  ZZ )
)  /\  q  e.  ZZ )  ->  r  e.  ZZ )
1514ad3antrrr 492 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  NN )  /\  ( r  e.  ZZ  /\  s  e.  ZZ ) )  /\  q  e.  ZZ )  /\  ( 0  <_  r  /\  r  <  ( abs `  D )  /\  N  =  ( ( q  x.  D )  +  r ) ) )  /\  t  e.  ZZ )  /\  ( 0  <_ 
s  /\  s  <  ( abs `  D )  /\  N  =  ( ( t  x.  D
)  +  s ) ) )  ->  r  e.  ZZ )
16 simplrr 536 . . . . . . . . . . . . . . 15  |-  ( ( ( ( N  e.  ZZ  /\  D  e.  NN )  /\  (
r  e.  ZZ  /\  s  e.  ZZ )
)  /\  q  e.  ZZ )  ->  s  e.  ZZ )
1716ad3antrrr 492 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  NN )  /\  ( r  e.  ZZ  /\  s  e.  ZZ ) )  /\  q  e.  ZZ )  /\  ( 0  <_  r  /\  r  <  ( abs `  D )  /\  N  =  ( ( q  x.  D )  +  r ) ) )  /\  t  e.  ZZ )  /\  ( 0  <_ 
s  /\  s  <  ( abs `  D )  /\  N  =  ( ( t  x.  D
)  +  s ) ) )  ->  s  e.  ZZ )
18 simpr 110 . . . . . . . . . . . . . . 15  |-  ( ( ( ( N  e.  ZZ  /\  D  e.  NN )  /\  (
r  e.  ZZ  /\  s  e.  ZZ )
)  /\  q  e.  ZZ )  ->  q  e.  ZZ )
1918ad3antrrr 492 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  NN )  /\  ( r  e.  ZZ  /\  s  e.  ZZ ) )  /\  q  e.  ZZ )  /\  ( 0  <_  r  /\  r  <  ( abs `  D )  /\  N  =  ( ( q  x.  D )  +  r ) ) )  /\  t  e.  ZZ )  /\  ( 0  <_ 
s  /\  s  <  ( abs `  D )  /\  N  =  ( ( t  x.  D
)  +  s ) ) )  ->  q  e.  ZZ )
20 simplr 528 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  NN )  /\  ( r  e.  ZZ  /\  s  e.  ZZ ) )  /\  q  e.  ZZ )  /\  ( 0  <_  r  /\  r  <  ( abs `  D )  /\  N  =  ( ( q  x.  D )  +  r ) ) )  /\  t  e.  ZZ )  /\  ( 0  <_ 
s  /\  s  <  ( abs `  D )  /\  N  =  ( ( t  x.  D
)  +  s ) ) )  ->  t  e.  ZZ )
21 simpr1 1005 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  NN )  /\  ( r  e.  ZZ  /\  s  e.  ZZ ) )  /\  q  e.  ZZ )  /\  ( 0  <_  r  /\  r  <  ( abs `  D )  /\  N  =  ( ( q  x.  D )  +  r ) ) )  /\  t  e.  ZZ )  /\  ( 0  <_ 
s  /\  s  <  ( abs `  D )  /\  N  =  ( ( t  x.  D
)  +  s ) ) )  ->  0  <_  s )
22 simpr2 1006 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( N  e.  ZZ  /\  D  e.  NN )  /\  (
r  e.  ZZ  /\  s  e.  ZZ )
)  /\  q  e.  ZZ )  /\  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) ) )  -> 
r  <  ( abs `  D ) )
2322ad2antrr 488 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  NN )  /\  ( r  e.  ZZ  /\  s  e.  ZZ ) )  /\  q  e.  ZZ )  /\  ( 0  <_  r  /\  r  <  ( abs `  D )  /\  N  =  ( ( q  x.  D )  +  r ) ) )  /\  t  e.  ZZ )  /\  ( 0  <_ 
s  /\  s  <  ( abs `  D )  /\  N  =  ( ( t  x.  D
)  +  s ) ) )  ->  r  <  ( abs `  D
) )
2413nnred 9020 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  NN )  /\  ( r  e.  ZZ  /\  s  e.  ZZ ) )  /\  q  e.  ZZ )  /\  ( 0  <_  r  /\  r  <  ( abs `  D )  /\  N  =  ( ( q  x.  D )  +  r ) ) )  /\  t  e.  ZZ )  /\  ( 0  <_ 
s  /\  s  <  ( abs `  D )  /\  N  =  ( ( t  x.  D
)  +  s ) ) )  ->  D  e.  RR )
2513nnnn0d 9319 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  NN )  /\  ( r  e.  ZZ  /\  s  e.  ZZ ) )  /\  q  e.  ZZ )  /\  ( 0  <_  r  /\  r  <  ( abs `  D )  /\  N  =  ( ( q  x.  D )  +  r ) ) )  /\  t  e.  ZZ )  /\  ( 0  <_ 
s  /\  s  <  ( abs `  D )  /\  N  =  ( ( t  x.  D
)  +  s ) ) )  ->  D  e.  NN0 )
2625nn0ge0d 9322 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  NN )  /\  ( r  e.  ZZ  /\  s  e.  ZZ ) )  /\  q  e.  ZZ )  /\  ( 0  <_  r  /\  r  <  ( abs `  D )  /\  N  =  ( ( q  x.  D )  +  r ) ) )  /\  t  e.  ZZ )  /\  ( 0  <_ 
s  /\  s  <  ( abs `  D )  /\  N  =  ( ( t  x.  D
)  +  s ) ) )  ->  0  <_  D )
2724, 26absidd 11349 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  NN )  /\  ( r  e.  ZZ  /\  s  e.  ZZ ) )  /\  q  e.  ZZ )  /\  ( 0  <_  r  /\  r  <  ( abs `  D )  /\  N  =  ( ( q  x.  D )  +  r ) ) )  /\  t  e.  ZZ )  /\  ( 0  <_ 
s  /\  s  <  ( abs `  D )  /\  N  =  ( ( t  x.  D
)  +  s ) ) )  ->  ( abs `  D )  =  D )
2823, 27breqtrd 4060 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  NN )  /\  ( r  e.  ZZ  /\  s  e.  ZZ ) )  /\  q  e.  ZZ )  /\  ( 0  <_  r  /\  r  <  ( abs `  D )  /\  N  =  ( ( q  x.  D )  +  r ) ) )  /\  t  e.  ZZ )  /\  ( 0  <_ 
s  /\  s  <  ( abs `  D )  /\  N  =  ( ( t  x.  D
)  +  s ) ) )  ->  r  <  D )
29 simpr3 1007 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( N  e.  ZZ  /\  D  e.  NN )  /\  (
r  e.  ZZ  /\  s  e.  ZZ )
)  /\  q  e.  ZZ )  /\  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) ) )  ->  N  =  ( (
q  x.  D )  +  r ) )
3029ad2antrr 488 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  NN )  /\  ( r  e.  ZZ  /\  s  e.  ZZ ) )  /\  q  e.  ZZ )  /\  ( 0  <_  r  /\  r  <  ( abs `  D )  /\  N  =  ( ( q  x.  D )  +  r ) ) )  /\  t  e.  ZZ )  /\  ( 0  <_ 
s  /\  s  <  ( abs `  D )  /\  N  =  ( ( t  x.  D
)  +  s ) ) )  ->  N  =  ( ( q  x.  D )  +  r ) )
31 simpr3 1007 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  NN )  /\  ( r  e.  ZZ  /\  s  e.  ZZ ) )  /\  q  e.  ZZ )  /\  ( 0  <_  r  /\  r  <  ( abs `  D )  /\  N  =  ( ( q  x.  D )  +  r ) ) )  /\  t  e.  ZZ )  /\  ( 0  <_ 
s  /\  s  <  ( abs `  D )  /\  N  =  ( ( t  x.  D
)  +  s ) ) )  ->  N  =  ( ( t  x.  D )  +  s ) )
3230, 31eqtr3d 2231 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  NN )  /\  ( r  e.  ZZ  /\  s  e.  ZZ ) )  /\  q  e.  ZZ )  /\  ( 0  <_  r  /\  r  <  ( abs `  D )  /\  N  =  ( ( q  x.  D )  +  r ) ) )  /\  t  e.  ZZ )  /\  ( 0  <_ 
s  /\  s  <  ( abs `  D )  /\  N  =  ( ( t  x.  D
)  +  s ) ) )  ->  (
( q  x.  D
)  +  r )  =  ( ( t  x.  D )  +  s ) )
3313, 15, 17, 19, 20, 21, 28, 32divalglemnqt 12102 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  NN )  /\  ( r  e.  ZZ  /\  s  e.  ZZ ) )  /\  q  e.  ZZ )  /\  ( 0  <_  r  /\  r  <  ( abs `  D )  /\  N  =  ( ( q  x.  D )  +  r ) ) )  /\  t  e.  ZZ )  /\  ( 0  <_ 
s  /\  s  <  ( abs `  D )  /\  N  =  ( ( t  x.  D
)  +  s ) ) )  ->  -.  q  <  t )
3433adantr 276 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  NN )  /\  (
r  e.  ZZ  /\  s  e.  ZZ )
)  /\  q  e.  ZZ )  /\  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) ) )  /\  t  e.  ZZ )  /\  ( 0  <_  s  /\  s  <  ( abs `  D )  /\  N  =  ( ( t  x.  D )  +  s ) ) )  /\  q  <  t
)  ->  -.  q  <  t )
3511, 34pm2.21dd 621 . . . . . . . . . . 11  |-  ( ( ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  NN )  /\  (
r  e.  ZZ  /\  s  e.  ZZ )
)  /\  q  e.  ZZ )  /\  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) ) )  /\  t  e.  ZZ )  /\  ( 0  <_  s  /\  s  <  ( abs `  D )  /\  N  =  ( ( t  x.  D )  +  s ) ) )  /\  q  <  t
)  ->  r  =  s )
3613adantr 276 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  NN )  /\  (
r  e.  ZZ  /\  s  e.  ZZ )
)  /\  q  e.  ZZ )  /\  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) ) )  /\  t  e.  ZZ )  /\  ( 0  <_  s  /\  s  <  ( abs `  D )  /\  N  =  ( ( t  x.  D )  +  s ) ) )  /\  q  =  t )  ->  D  e.  NN )
3736nnzd 9464 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  NN )  /\  (
r  e.  ZZ  /\  s  e.  ZZ )
)  /\  q  e.  ZZ )  /\  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) ) )  /\  t  e.  ZZ )  /\  ( 0  <_  s  /\  s  <  ( abs `  D )  /\  N  =  ( ( t  x.  D )  +  s ) ) )  /\  q  =  t )  ->  D  e.  ZZ )
3815adantr 276 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  NN )  /\  (
r  e.  ZZ  /\  s  e.  ZZ )
)  /\  q  e.  ZZ )  /\  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) ) )  /\  t  e.  ZZ )  /\  ( 0  <_  s  /\  s  <  ( abs `  D )  /\  N  =  ( ( t  x.  D )  +  s ) ) )  /\  q  =  t )  ->  r  e.  ZZ )
3917adantr 276 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  NN )  /\  (
r  e.  ZZ  /\  s  e.  ZZ )
)  /\  q  e.  ZZ )  /\  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) ) )  /\  t  e.  ZZ )  /\  ( 0  <_  s  /\  s  <  ( abs `  D )  /\  N  =  ( ( t  x.  D )  +  s ) ) )  /\  q  =  t )  ->  s  e.  ZZ )
4019adantr 276 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  NN )  /\  (
r  e.  ZZ  /\  s  e.  ZZ )
)  /\  q  e.  ZZ )  /\  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) ) )  /\  t  e.  ZZ )  /\  ( 0  <_  s  /\  s  <  ( abs `  D )  /\  N  =  ( ( t  x.  D )  +  s ) ) )  /\  q  =  t )  ->  q  e.  ZZ )
4120adantr 276 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  NN )  /\  (
r  e.  ZZ  /\  s  e.  ZZ )
)  /\  q  e.  ZZ )  /\  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) ) )  /\  t  e.  ZZ )  /\  ( 0  <_  s  /\  s  <  ( abs `  D )  /\  N  =  ( ( t  x.  D )  +  s ) ) )  /\  q  =  t )  ->  t  e.  ZZ )
42 simpr 110 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  NN )  /\  (
r  e.  ZZ  /\  s  e.  ZZ )
)  /\  q  e.  ZZ )  /\  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) ) )  /\  t  e.  ZZ )  /\  ( 0  <_  s  /\  s  <  ( abs `  D )  /\  N  =  ( ( t  x.  D )  +  s ) ) )  /\  q  =  t )  ->  q  =  t )
4332adantr 276 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  NN )  /\  (
r  e.  ZZ  /\  s  e.  ZZ )
)  /\  q  e.  ZZ )  /\  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) ) )  /\  t  e.  ZZ )  /\  ( 0  <_  s  /\  s  <  ( abs `  D )  /\  N  =  ( ( t  x.  D )  +  s ) ) )  /\  q  =  t )  ->  ( (
q  x.  D )  +  r )  =  ( ( t  x.  D )  +  s ) )
4437, 38, 39, 40, 41, 42, 43divalglemqt 12101 . . . . . . . . . . 11  |-  ( ( ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  NN )  /\  (
r  e.  ZZ  /\  s  e.  ZZ )
)  /\  q  e.  ZZ )  /\  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) ) )  /\  t  e.  ZZ )  /\  ( 0  <_  s  /\  s  <  ( abs `  D )  /\  N  =  ( ( t  x.  D )  +  s ) ) )  /\  q  =  t )  ->  r  =  s )
45 simpr 110 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  NN )  /\  (
r  e.  ZZ  /\  s  e.  ZZ )
)  /\  q  e.  ZZ )  /\  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) ) )  /\  t  e.  ZZ )  /\  ( 0  <_  s  /\  s  <  ( abs `  D )  /\  N  =  ( ( t  x.  D )  +  s ) ) )  /\  t  <  q
)  ->  t  <  q )
46 simpr1 1005 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( N  e.  ZZ  /\  D  e.  NN )  /\  (
r  e.  ZZ  /\  s  e.  ZZ )
)  /\  q  e.  ZZ )  /\  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) ) )  -> 
0  <_  r )
4746ad2antrr 488 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  NN )  /\  ( r  e.  ZZ  /\  s  e.  ZZ ) )  /\  q  e.  ZZ )  /\  ( 0  <_  r  /\  r  <  ( abs `  D )  /\  N  =  ( ( q  x.  D )  +  r ) ) )  /\  t  e.  ZZ )  /\  ( 0  <_ 
s  /\  s  <  ( abs `  D )  /\  N  =  ( ( t  x.  D
)  +  s ) ) )  ->  0  <_  r )
48 simpr2 1006 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  NN )  /\  ( r  e.  ZZ  /\  s  e.  ZZ ) )  /\  q  e.  ZZ )  /\  ( 0  <_  r  /\  r  <  ( abs `  D )  /\  N  =  ( ( q  x.  D )  +  r ) ) )  /\  t  e.  ZZ )  /\  ( 0  <_ 
s  /\  s  <  ( abs `  D )  /\  N  =  ( ( t  x.  D
)  +  s ) ) )  ->  s  <  ( abs `  D
) )
4948, 27breqtrd 4060 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  NN )  /\  ( r  e.  ZZ  /\  s  e.  ZZ ) )  /\  q  e.  ZZ )  /\  ( 0  <_  r  /\  r  <  ( abs `  D )  /\  N  =  ( ( q  x.  D )  +  r ) ) )  /\  t  e.  ZZ )  /\  ( 0  <_ 
s  /\  s  <  ( abs `  D )  /\  N  =  ( ( t  x.  D
)  +  s ) ) )  ->  s  <  D )
5031, 30eqtr3d 2231 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  NN )  /\  ( r  e.  ZZ  /\  s  e.  ZZ ) )  /\  q  e.  ZZ )  /\  ( 0  <_  r  /\  r  <  ( abs `  D )  /\  N  =  ( ( q  x.  D )  +  r ) ) )  /\  t  e.  ZZ )  /\  ( 0  <_ 
s  /\  s  <  ( abs `  D )  /\  N  =  ( ( t  x.  D
)  +  s ) ) )  ->  (
( t  x.  D
)  +  s )  =  ( ( q  x.  D )  +  r ) )
5113, 17, 15, 20, 19, 47, 49, 50divalglemnqt 12102 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  NN )  /\  ( r  e.  ZZ  /\  s  e.  ZZ ) )  /\  q  e.  ZZ )  /\  ( 0  <_  r  /\  r  <  ( abs `  D )  /\  N  =  ( ( q  x.  D )  +  r ) ) )  /\  t  e.  ZZ )  /\  ( 0  <_ 
s  /\  s  <  ( abs `  D )  /\  N  =  ( ( t  x.  D
)  +  s ) ) )  ->  -.  t  <  q )
5251adantr 276 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  NN )  /\  (
r  e.  ZZ  /\  s  e.  ZZ )
)  /\  q  e.  ZZ )  /\  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) ) )  /\  t  e.  ZZ )  /\  ( 0  <_  s  /\  s  <  ( abs `  D )  /\  N  =  ( ( t  x.  D )  +  s ) ) )  /\  t  <  q
)  ->  -.  t  <  q )
5345, 52pm2.21dd 621 . . . . . . . . . . 11  |-  ( ( ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  NN )  /\  (
r  e.  ZZ  /\  s  e.  ZZ )
)  /\  q  e.  ZZ )  /\  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) ) )  /\  t  e.  ZZ )  /\  ( 0  <_  s  /\  s  <  ( abs `  D )  /\  N  =  ( ( t  x.  D )  +  s ) ) )  /\  t  <  q
)  ->  r  =  s )
54 ztri3or 9386 . . . . . . . . . . . 12  |-  ( ( q  e.  ZZ  /\  t  e.  ZZ )  ->  ( q  <  t  \/  q  =  t  \/  t  <  q ) )
5519, 20, 54syl2anc 411 . . . . . . . . . . 11  |-  ( ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  NN )  /\  ( r  e.  ZZ  /\  s  e.  ZZ ) )  /\  q  e.  ZZ )  /\  ( 0  <_  r  /\  r  <  ( abs `  D )  /\  N  =  ( ( q  x.  D )  +  r ) ) )  /\  t  e.  ZZ )  /\  ( 0  <_ 
s  /\  s  <  ( abs `  D )  /\  N  =  ( ( t  x.  D
)  +  s ) ) )  ->  (
q  <  t  \/  q  =  t  \/  t  <  q ) )
5635, 44, 53, 55mpjao3dan 1318 . . . . . . . . . 10  |-  ( ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  NN )  /\  ( r  e.  ZZ  /\  s  e.  ZZ ) )  /\  q  e.  ZZ )  /\  ( 0  <_  r  /\  r  <  ( abs `  D )  /\  N  =  ( ( q  x.  D )  +  r ) ) )  /\  t  e.  ZZ )  /\  ( 0  <_ 
s  /\  s  <  ( abs `  D )  /\  N  =  ( ( t  x.  D
)  +  s ) ) )  ->  r  =  s )
5756ex 115 . . . . . . . . 9  |-  ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  NN )  /\  ( r  e.  ZZ  /\  s  e.  ZZ ) )  /\  q  e.  ZZ )  /\  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) ) )  /\  t  e.  ZZ )  ->  ( ( 0  <_ 
s  /\  s  <  ( abs `  D )  /\  N  =  ( ( t  x.  D
)  +  s ) )  ->  r  =  s ) )
5857rexlimdva 2614 . . . . . . . 8  |-  ( ( ( ( ( N  e.  ZZ  /\  D  e.  NN )  /\  (
r  e.  ZZ  /\  s  e.  ZZ )
)  /\  q  e.  ZZ )  /\  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) ) )  -> 
( E. t  e.  ZZ  ( 0  <_ 
s  /\  s  <  ( abs `  D )  /\  N  =  ( ( t  x.  D
)  +  s ) )  ->  r  =  s ) )
5910, 58biimtrid 152 . . . . . . 7  |-  ( ( ( ( ( N  e.  ZZ  /\  D  e.  NN )  /\  (
r  e.  ZZ  /\  s  e.  ZZ )
)  /\  q  e.  ZZ )  /\  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) ) )  -> 
( E. q  e.  ZZ  ( 0  <_ 
s  /\  s  <  ( abs `  D )  /\  N  =  ( ( q  x.  D
)  +  s ) )  ->  r  =  s ) )
6059exp31 364 . . . . . 6  |-  ( ( ( N  e.  ZZ  /\  D  e.  NN )  /\  ( r  e.  ZZ  /\  s  e.  ZZ ) )  -> 
( q  e.  ZZ  ->  ( ( 0  <_ 
r  /\  r  <  ( abs `  D )  /\  N  =  ( ( q  x.  D
)  +  r ) )  ->  ( E. q  e.  ZZ  (
0  <_  s  /\  s  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  s ) )  ->  r  =  s ) ) ) )
612, 5, 60rexlimd 2611 . . . . 5  |-  ( ( ( N  e.  ZZ  /\  D  e.  NN )  /\  ( r  e.  ZZ  /\  s  e.  ZZ ) )  -> 
( E. q  e.  ZZ  ( 0  <_ 
r  /\  r  <  ( abs `  D )  /\  N  =  ( ( q  x.  D
)  +  r ) )  ->  ( E. q  e.  ZZ  (
0  <_  s  /\  s  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  s ) )  ->  r  =  s ) ) )
6261impd 254 . . . 4  |-  ( ( ( N  e.  ZZ  /\  D  e.  NN )  /\  ( r  e.  ZZ  /\  s  e.  ZZ ) )  -> 
( ( E. q  e.  ZZ  ( 0  <_ 
r  /\  r  <  ( abs `  D )  /\  N  =  ( ( q  x.  D
)  +  r ) )  /\  E. q  e.  ZZ  ( 0  <_ 
s  /\  s  <  ( abs `  D )  /\  N  =  ( ( q  x.  D
)  +  s ) ) )  ->  r  =  s ) )
6362ralrimivva 2579 . . 3  |-  ( ( N  e.  ZZ  /\  D  e.  NN )  ->  A. r  e.  ZZ  A. s  e.  ZZ  (
( E. q  e.  ZZ  ( 0  <_ 
r  /\  r  <  ( abs `  D )  /\  N  =  ( ( q  x.  D
)  +  r ) )  /\  E. q  e.  ZZ  ( 0  <_ 
s  /\  s  <  ( abs `  D )  /\  N  =  ( ( q  x.  D
)  +  s ) ) )  ->  r  =  s ) )
64 breq2 4038 . . . . . 6  |-  ( r  =  s  ->  (
0  <_  r  <->  0  <_  s ) )
65 breq1 4037 . . . . . 6  |-  ( r  =  s  ->  (
r  <  ( abs `  D )  <->  s  <  ( abs `  D ) ) )
66 oveq2 5933 . . . . . . 7  |-  ( r  =  s  ->  (
( q  x.  D
)  +  r )  =  ( ( q  x.  D )  +  s ) )
6766eqeq2d 2208 . . . . . 6  |-  ( r  =  s  ->  ( N  =  ( (
q  x.  D )  +  r )  <->  N  =  ( ( q  x.  D )  +  s ) ) )
6864, 65, 673anbi123d 1323 . . . . 5  |-  ( r  =  s  ->  (
( 0  <_  r  /\  r  <  ( abs `  D )  /\  N  =  ( ( q  x.  D )  +  r ) )  <->  ( 0  <_  s  /\  s  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  s ) ) ) )
6968rexbidv 2498 . . . 4  |-  ( r  =  s  ->  ( E. q  e.  ZZ  ( 0  <_  r  /\  r  <  ( abs `  D )  /\  N  =  ( ( q  x.  D )  +  r ) )  <->  E. q  e.  ZZ  ( 0  <_ 
s  /\  s  <  ( abs `  D )  /\  N  =  ( ( q  x.  D
)  +  s ) ) ) )
7069rmo4 2957 . . 3  |-  ( E* r  e.  ZZ  E. q  e.  ZZ  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) )  <->  A. r  e.  ZZ  A. s  e.  ZZ  ( ( E. q  e.  ZZ  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) )  /\  E. q  e.  ZZ  (
0  <_  s  /\  s  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  s ) ) )  -> 
r  =  s ) )
7163, 70sylibr 134 . 2  |-  ( ( N  e.  ZZ  /\  D  e.  NN )  ->  E* r  e.  ZZ  E. q  e.  ZZ  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) ) )
72 reu5 2714 . 2  |-  ( E! r  e.  ZZ  E. q  e.  ZZ  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) )  <->  ( E. r  e.  ZZ  E. q  e.  ZZ  ( 0  <_ 
r  /\  r  <  ( abs `  D )  /\  N  =  ( ( q  x.  D
)  +  r ) )  /\  E* r  e.  ZZ  E. q  e.  ZZ  ( 0  <_ 
r  /\  r  <  ( abs `  D )  /\  N  =  ( ( q  x.  D
)  +  r ) ) ) )
731, 71, 72sylanbrc 417 1  |-  ( ( N  e.  ZZ  /\  D  e.  NN )  ->  E! r  e.  ZZ  E. q  e.  ZZ  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    \/ w3o 979    /\ w3a 980    = wceq 1364    e. wcel 2167   A.wral 2475   E.wrex 2476   E!wreu 2477   E*wrmo 2478   class class class wbr 4034   ` cfv 5259  (class class class)co 5925   0cc0 7896    + caddc 7899    x. cmul 7901    < clt 8078    <_ cle 8079   NNcn 9007   ZZcz 9343   abscabs 11179
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-mulrcl 7995  ax-addcom 7996  ax-mulcom 7997  ax-addass 7998  ax-mulass 7999  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-1rid 8003  ax-0id 8004  ax-rnegex 8005  ax-precex 8006  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-apti 8011  ax-pre-ltadd 8012  ax-pre-mulgt0 8013  ax-pre-mulext 8014  ax-arch 8015
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-frec 6458  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-reap 8619  df-ap 8626  df-div 8717  df-inn 9008  df-2 9066  df-n0 9267  df-z 9344  df-uz 9619  df-q 9711  df-rp 9746  df-fl 10377  df-mod 10432  df-seqfrec 10557  df-exp 10648  df-cj 11024  df-re 11025  df-im 11026  df-rsqrt 11180  df-abs 11181
This theorem is referenced by:  divalg  12106
  Copyright terms: Public domain W3C validator