| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elrp | Unicode version | ||
| Description: Membership in the set of positive reals. (Contributed by NM, 27-Oct-2007.) |
| Ref | Expression |
|---|---|
| elrp |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq2 4038 |
. 2
| |
| 2 | df-rp 9746 |
. 2
| |
| 3 | 1, 2 | elrab2 2923 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rab 2484 df-v 2765 df-un 3161 df-sn 3629 df-pr 3630 df-op 3632 df-br 4035 df-rp 9746 |
| This theorem is referenced by: elrpii 9748 nnrp 9755 rpgt0 9757 rpregt0 9759 ralrp 9767 rexrp 9768 rpaddcl 9769 rpmulcl 9770 rpdivcl 9771 rpgecl 9774 rphalflt 9775 ge0p1rp 9777 rpnegap 9778 negelrp 9779 ltsubrp 9782 ltaddrp 9783 difrp 9784 elrpd 9785 iccdil 10090 icccntr 10092 dfrp2 10370 expgt0 10681 sqrtdiv 11224 mulcn2 11494 ef01bndlem 11938 nconstwlpolem 15796 |
| Copyright terms: Public domain | W3C validator |