![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > elrp | Unicode version |
Description: Membership in the set of positive reals. (Contributed by NM, 27-Oct-2007.) |
Ref | Expression |
---|---|
elrp |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq2 4034 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | df-rp 9723 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | elrab2 2920 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-rab 2481 df-v 2762 df-un 3158 df-sn 3625 df-pr 3626 df-op 3628 df-br 4031 df-rp 9723 |
This theorem is referenced by: elrpii 9725 nnrp 9732 rpgt0 9734 rpregt0 9736 ralrp 9744 rexrp 9745 rpaddcl 9746 rpmulcl 9747 rpdivcl 9748 rpgecl 9751 rphalflt 9752 ge0p1rp 9754 rpnegap 9755 negelrp 9756 ltsubrp 9759 ltaddrp 9760 difrp 9761 elrpd 9762 iccdil 10067 icccntr 10069 dfrp2 10335 expgt0 10646 sqrtdiv 11189 mulcn2 11458 ef01bndlem 11902 nconstwlpolem 15625 |
Copyright terms: Public domain | W3C validator |