| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > elrp | Unicode version | ||
| Description: Membership in the set of positive reals. (Contributed by NM, 27-Oct-2007.) | 
| Ref | Expression | 
|---|---|
| elrp | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | breq2 4037 | 
. 2
 | |
| 2 | df-rp 9729 | 
. 2
 | |
| 3 | 1, 2 | elrab2 2923 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rab 2484 df-v 2765 df-un 3161 df-sn 3628 df-pr 3629 df-op 3631 df-br 4034 df-rp 9729 | 
| This theorem is referenced by: elrpii 9731 nnrp 9738 rpgt0 9740 rpregt0 9742 ralrp 9750 rexrp 9751 rpaddcl 9752 rpmulcl 9753 rpdivcl 9754 rpgecl 9757 rphalflt 9758 ge0p1rp 9760 rpnegap 9761 negelrp 9762 ltsubrp 9765 ltaddrp 9766 difrp 9767 elrpd 9768 iccdil 10073 icccntr 10075 dfrp2 10353 expgt0 10664 sqrtdiv 11207 mulcn2 11477 ef01bndlem 11921 nconstwlpolem 15709 | 
| Copyright terms: Public domain | W3C validator |