Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elrp | Unicode version |
Description: Membership in the set of positive reals. (Contributed by NM, 27-Oct-2007.) |
Ref | Expression |
---|---|
elrp |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq2 3969 | . 2 | |
2 | df-rp 9543 | . 2 | |
3 | 1, 2 | elrab2 2871 | 1 |
Colors of variables: wff set class |
Syntax hints: wa 103 wb 104 wcel 2128 class class class wbr 3965 cr 7714 cc0 7715 clt 7895 crp 9542 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-ext 2139 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-rab 2444 df-v 2714 df-un 3106 df-sn 3566 df-pr 3567 df-op 3569 df-br 3966 df-rp 9543 |
This theorem is referenced by: elrpii 9545 nnrp 9552 rpgt0 9554 rpregt0 9556 ralrp 9564 rexrp 9565 rpaddcl 9566 rpmulcl 9567 rpdivcl 9568 rpgecl 9571 rphalflt 9572 ge0p1rp 9574 rpnegap 9575 negelrp 9576 ltsubrp 9579 ltaddrp 9580 difrp 9581 elrpd 9582 iccdil 9884 icccntr 9886 dfrp2 10145 expgt0 10434 sqrtdiv 10924 mulcn2 11191 ef01bndlem 11635 nconstwlpolem 13597 |
Copyright terms: Public domain | W3C validator |