| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elrp | Unicode version | ||
| Description: Membership in the set of positive reals. (Contributed by NM, 27-Oct-2007.) |
| Ref | Expression |
|---|---|
| elrp |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq2 4049 |
. 2
| |
| 2 | df-rp 9778 |
. 2
| |
| 3 | 1, 2 | elrab2 2932 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-rab 2493 df-v 2774 df-un 3170 df-sn 3639 df-pr 3640 df-op 3642 df-br 4046 df-rp 9778 |
| This theorem is referenced by: elrpii 9780 nnrp 9787 rpgt0 9789 rpregt0 9791 ralrp 9799 rexrp 9800 rpaddcl 9801 rpmulcl 9802 rpdivcl 9803 rpgecl 9806 rphalflt 9807 ge0p1rp 9809 rpnegap 9810 negelrp 9811 ltsubrp 9814 ltaddrp 9815 difrp 9816 elrpd 9817 iccdil 10122 icccntr 10124 dfrp2 10408 expgt0 10719 sqrtdiv 11386 mulcn2 11656 ef01bndlem 12100 nconstwlpolem 16041 |
| Copyright terms: Public domain | W3C validator |