ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elrp Unicode version

Theorem elrp 9779
Description: Membership in the set of positive reals. (Contributed by NM, 27-Oct-2007.)
Assertion
Ref Expression
elrp  |-  ( A  e.  RR+  <->  ( A  e.  RR  /\  0  < 
A ) )

Proof of Theorem elrp
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 breq2 4049 . 2  |-  ( x  =  A  ->  (
0  <  x  <->  0  <  A ) )
2 df-rp 9778 . 2  |-  RR+  =  { x  e.  RR  |  0  <  x }
31, 2elrab2 2932 1  |-  ( A  e.  RR+  <->  ( A  e.  RR  /\  0  < 
A ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    e. wcel 2176   class class class wbr 4045   RRcr 7926   0cc0 7927    < clt 8109   RR+crp 9777
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-rab 2493  df-v 2774  df-un 3170  df-sn 3639  df-pr 3640  df-op 3642  df-br 4046  df-rp 9778
This theorem is referenced by:  elrpii  9780  nnrp  9787  rpgt0  9789  rpregt0  9791  ralrp  9799  rexrp  9800  rpaddcl  9801  rpmulcl  9802  rpdivcl  9803  rpgecl  9806  rphalflt  9807  ge0p1rp  9809  rpnegap  9810  negelrp  9811  ltsubrp  9814  ltaddrp  9815  difrp  9816  elrpd  9817  iccdil  10122  icccntr  10124  dfrp2  10408  expgt0  10719  sqrtdiv  11386  mulcn2  11656  ef01bndlem  12100  nconstwlpolem  16041
  Copyright terms: Public domain W3C validator