ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elrp Unicode version

Theorem elrp 9812
Description: Membership in the set of positive reals. (Contributed by NM, 27-Oct-2007.)
Assertion
Ref Expression
elrp  |-  ( A  e.  RR+  <->  ( A  e.  RR  /\  0  < 
A ) )

Proof of Theorem elrp
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 breq2 4063 . 2  |-  ( x  =  A  ->  (
0  <  x  <->  0  <  A ) )
2 df-rp 9811 . 2  |-  RR+  =  { x  e.  RR  |  0  <  x }
31, 2elrab2 2939 1  |-  ( A  e.  RR+  <->  ( A  e.  RR  /\  0  < 
A ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    e. wcel 2178   class class class wbr 4059   RRcr 7959   0cc0 7960    < clt 8142   RR+crp 9810
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-rab 2495  df-v 2778  df-un 3178  df-sn 3649  df-pr 3650  df-op 3652  df-br 4060  df-rp 9811
This theorem is referenced by:  elrpii  9813  nnrp  9820  rpgt0  9822  rpregt0  9824  ralrp  9832  rexrp  9833  rpaddcl  9834  rpmulcl  9835  rpdivcl  9836  rpgecl  9839  rphalflt  9840  ge0p1rp  9842  rpnegap  9843  negelrp  9844  ltsubrp  9847  ltaddrp  9848  difrp  9849  elrpd  9850  iccdil  10155  icccntr  10157  dfrp2  10443  expgt0  10754  sqrtdiv  11468  mulcn2  11738  ef01bndlem  12182  nconstwlpolem  16206
  Copyright terms: Public domain W3C validator