![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > elrp | Unicode version |
Description: Membership in the set of positive reals. (Contributed by NM, 27-Oct-2007.) |
Ref | Expression |
---|---|
elrp |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq2 4033 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | df-rp 9720 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | elrab2 2919 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-rab 2481 df-v 2762 df-un 3157 df-sn 3624 df-pr 3625 df-op 3627 df-br 4030 df-rp 9720 |
This theorem is referenced by: elrpii 9722 nnrp 9729 rpgt0 9731 rpregt0 9733 ralrp 9741 rexrp 9742 rpaddcl 9743 rpmulcl 9744 rpdivcl 9745 rpgecl 9748 rphalflt 9749 ge0p1rp 9751 rpnegap 9752 negelrp 9753 ltsubrp 9756 ltaddrp 9757 difrp 9758 elrpd 9759 iccdil 10064 icccntr 10066 dfrp2 10332 expgt0 10643 sqrtdiv 11186 mulcn2 11455 ef01bndlem 11899 nconstwlpolem 15555 |
Copyright terms: Public domain | W3C validator |