ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elrp Unicode version

Theorem elrp 9544
Description: Membership in the set of positive reals. (Contributed by NM, 27-Oct-2007.)
Assertion
Ref Expression
elrp  |-  ( A  e.  RR+  <->  ( A  e.  RR  /\  0  < 
A ) )

Proof of Theorem elrp
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 breq2 3969 . 2  |-  ( x  =  A  ->  (
0  <  x  <->  0  <  A ) )
2 df-rp 9543 . 2  |-  RR+  =  { x  e.  RR  |  0  <  x }
31, 2elrab2 2871 1  |-  ( A  e.  RR+  <->  ( A  e.  RR  /\  0  < 
A ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 103    <-> wb 104    e. wcel 2128   class class class wbr 3965   RRcr 7714   0cc0 7715    < clt 7895   RR+crp 9542
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2139
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1338  df-nf 1441  df-sb 1743  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-rab 2444  df-v 2714  df-un 3106  df-sn 3566  df-pr 3567  df-op 3569  df-br 3966  df-rp 9543
This theorem is referenced by:  elrpii  9545  nnrp  9552  rpgt0  9554  rpregt0  9556  ralrp  9564  rexrp  9565  rpaddcl  9566  rpmulcl  9567  rpdivcl  9568  rpgecl  9571  rphalflt  9572  ge0p1rp  9574  rpnegap  9575  negelrp  9576  ltsubrp  9579  ltaddrp  9580  difrp  9581  elrpd  9582  iccdil  9884  icccntr  9886  dfrp2  10145  expgt0  10434  sqrtdiv  10924  mulcn2  11191  ef01bndlem  11635  nconstwlpolem  13597
  Copyright terms: Public domain W3C validator