ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elrp Unicode version

Theorem elrp 9655
Description: Membership in the set of positive reals. (Contributed by NM, 27-Oct-2007.)
Assertion
Ref Expression
elrp  |-  ( A  e.  RR+  <->  ( A  e.  RR  /\  0  < 
A ) )

Proof of Theorem elrp
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 breq2 4008 . 2  |-  ( x  =  A  ->  (
0  <  x  <->  0  <  A ) )
2 df-rp 9654 . 2  |-  RR+  =  { x  e.  RR  |  0  <  x }
31, 2elrab2 2897 1  |-  ( A  e.  RR+  <->  ( A  e.  RR  /\  0  < 
A ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    e. wcel 2148   class class class wbr 4004   RRcr 7810   0cc0 7811    < clt 7992   RR+crp 9653
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-rab 2464  df-v 2740  df-un 3134  df-sn 3599  df-pr 3600  df-op 3602  df-br 4005  df-rp 9654
This theorem is referenced by:  elrpii  9656  nnrp  9663  rpgt0  9665  rpregt0  9667  ralrp  9675  rexrp  9676  rpaddcl  9677  rpmulcl  9678  rpdivcl  9679  rpgecl  9682  rphalflt  9683  ge0p1rp  9685  rpnegap  9686  negelrp  9687  ltsubrp  9690  ltaddrp  9691  difrp  9692  elrpd  9693  iccdil  9998  icccntr  10000  dfrp2  10264  expgt0  10553  sqrtdiv  11051  mulcn2  11320  ef01bndlem  11764  nconstwlpolem  14815
  Copyright terms: Public domain W3C validator