ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rpaddcl Unicode version

Theorem rpaddcl 9752
Description: Closure law for addition of positive reals. Part of Axiom 7 of [Apostol] p. 20. (Contributed by NM, 27-Oct-2007.)
Assertion
Ref Expression
rpaddcl  |-  ( ( A  e.  RR+  /\  B  e.  RR+ )  ->  ( A  +  B )  e.  RR+ )

Proof of Theorem rpaddcl
StepHypRef Expression
1 rpre 9735 . . 3  |-  ( A  e.  RR+  ->  A  e.  RR )
2 rpre 9735 . . 3  |-  ( B  e.  RR+  ->  B  e.  RR )
3 readdcl 8005 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  +  B
)  e.  RR )
41, 2, 3syl2an 289 . 2  |-  ( ( A  e.  RR+  /\  B  e.  RR+ )  ->  ( A  +  B )  e.  RR )
5 elrp 9730 . . 3  |-  ( A  e.  RR+  <->  ( A  e.  RR  /\  0  < 
A ) )
6 elrp 9730 . . 3  |-  ( B  e.  RR+  <->  ( B  e.  RR  /\  0  < 
B ) )
7 addgt0 8475 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  < 
A  /\  0  <  B ) )  ->  0  <  ( A  +  B
) )
87an4s 588 . . 3  |-  ( ( ( A  e.  RR  /\  0  <  A )  /\  ( B  e.  RR  /\  0  < 
B ) )  -> 
0  <  ( A  +  B ) )
95, 6, 8syl2anb 291 . 2  |-  ( ( A  e.  RR+  /\  B  e.  RR+ )  ->  0  <  ( A  +  B
) )
10 elrp 9730 . 2  |-  ( ( A  +  B )  e.  RR+  <->  ( ( A  +  B )  e.  RR  /\  0  < 
( A  +  B
) ) )
114, 9, 10sylanbrc 417 1  |-  ( ( A  e.  RR+  /\  B  e.  RR+ )  ->  ( A  +  B )  e.  RR+ )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    e. wcel 2167   class class class wbr 4033  (class class class)co 5922   RRcr 7878   0cc0 7879    + caddc 7882    < clt 8061   RR+crp 9728
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-addcom 7979  ax-addass 7981  ax-i2m1 7984  ax-0id 7987  ax-rnegex 7988  ax-pre-lttrn 7993  ax-pre-ltadd 7995
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-xp 4669  df-iota 5219  df-fv 5266  df-ov 5925  df-pnf 8063  df-mnf 8064  df-ltxr 8066  df-rp 9729
This theorem is referenced by:  rpaddcld  9787  fsumrpcl  11569  isumrpcl  11659  efgt1p2  11860
  Copyright terms: Public domain W3C validator