ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rpaddcl Unicode version

Theorem rpaddcl 9416
Description: Closure law for addition of positive reals. Part of Axiom 7 of [Apostol] p. 20. (Contributed by NM, 27-Oct-2007.)
Assertion
Ref Expression
rpaddcl  |-  ( ( A  e.  RR+  /\  B  e.  RR+ )  ->  ( A  +  B )  e.  RR+ )

Proof of Theorem rpaddcl
StepHypRef Expression
1 rpre 9399 . . 3  |-  ( A  e.  RR+  ->  A  e.  RR )
2 rpre 9399 . . 3  |-  ( B  e.  RR+  ->  B  e.  RR )
3 readdcl 7710 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  +  B
)  e.  RR )
41, 2, 3syl2an 285 . 2  |-  ( ( A  e.  RR+  /\  B  e.  RR+ )  ->  ( A  +  B )  e.  RR )
5 elrp 9395 . . 3  |-  ( A  e.  RR+  <->  ( A  e.  RR  /\  0  < 
A ) )
6 elrp 9395 . . 3  |-  ( B  e.  RR+  <->  ( B  e.  RR  /\  0  < 
B ) )
7 addgt0 8174 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  < 
A  /\  0  <  B ) )  ->  0  <  ( A  +  B
) )
87an4s 560 . . 3  |-  ( ( ( A  e.  RR  /\  0  <  A )  /\  ( B  e.  RR  /\  0  < 
B ) )  -> 
0  <  ( A  +  B ) )
95, 6, 8syl2anb 287 . 2  |-  ( ( A  e.  RR+  /\  B  e.  RR+ )  ->  0  <  ( A  +  B
) )
10 elrp 9395 . 2  |-  ( ( A  +  B )  e.  RR+  <->  ( ( A  +  B )  e.  RR  /\  0  < 
( A  +  B
) ) )
114, 9, 10sylanbrc 411 1  |-  ( ( A  e.  RR+  /\  B  e.  RR+ )  ->  ( A  +  B )  e.  RR+ )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    e. wcel 1463   class class class wbr 3897  (class class class)co 5740   RRcr 7583   0cc0 7584    + caddc 7587    < clt 7764   RR+crp 9393
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-13 1474  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-sep 4014  ax-pow 4066  ax-pr 4099  ax-un 4323  ax-setind 4420  ax-cnex 7675  ax-resscn 7676  ax-1cn 7677  ax-1re 7678  ax-icn 7679  ax-addcl 7680  ax-addrcl 7681  ax-mulcl 7682  ax-addcom 7684  ax-addass 7686  ax-i2m1 7689  ax-0id 7692  ax-rnegex 7693  ax-pre-lttrn 7698  ax-pre-ltadd 7700
This theorem depends on definitions:  df-bi 116  df-3an 947  df-tru 1317  df-fal 1320  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2245  df-ne 2284  df-nel 2379  df-ral 2396  df-rex 2397  df-rab 2400  df-v 2660  df-dif 3041  df-un 3043  df-in 3045  df-ss 3052  df-pw 3480  df-sn 3501  df-pr 3502  df-op 3504  df-uni 3705  df-br 3898  df-opab 3958  df-xp 4513  df-iota 5056  df-fv 5099  df-ov 5743  df-pnf 7766  df-mnf 7767  df-ltxr 7769  df-rp 9394
This theorem is referenced by:  rpaddcld  9450  fsumrpcl  11124  isumrpcl  11214  efgt1p2  11311
  Copyright terms: Public domain W3C validator