ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  riota5 Unicode version

Theorem riota5 5982
Description: A method for computing restricted iota. (Contributed by NM, 20-Oct-2011.) (Revised by Mario Carneiro, 6-Dec-2016.)
Hypotheses
Ref Expression
riota5.1  |-  ( ph  ->  B  e.  A )
riota5.2  |-  ( (
ph  /\  x  e.  A )  ->  ( ps 
<->  x  =  B ) )
Assertion
Ref Expression
riota5  |-  ( ph  ->  ( iota_ x  e.  A  ps )  =  B
)
Distinct variable groups:    x, A    x, B    ph, x
Allowed substitution hint:    ps( x)

Proof of Theorem riota5
StepHypRef Expression
1 nfcvd 2373 . 2  |-  ( ph  -> 
F/_ x B )
2 riota5.1 . 2  |-  ( ph  ->  B  e.  A )
3 riota5.2 . 2  |-  ( (
ph  /\  x  e.  A )  ->  ( ps 
<->  x  =  B ) )
41, 2, 3riota5f 5981 1  |-  ( ph  ->  ( iota_ x  e.  A  ps )  =  B
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1395    e. wcel 2200   iota_crio 5953
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-reu 2515  df-v 2801  df-sbc 3029  df-un 3201  df-sn 3672  df-pr 3673  df-uni 3889  df-iota 5278  df-riota 5954
This theorem is referenced by:  f1ocnvfv3  5990  caucvgrelemrec  11490  sqrt0  11515  sqrtsq  11555  dfgcd3  12531
  Copyright terms: Public domain W3C validator