ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  riota5 Unicode version

Theorem riota5 5899
Description: A method for computing restricted iota. (Contributed by NM, 20-Oct-2011.) (Revised by Mario Carneiro, 6-Dec-2016.)
Hypotheses
Ref Expression
riota5.1  |-  ( ph  ->  B  e.  A )
riota5.2  |-  ( (
ph  /\  x  e.  A )  ->  ( ps 
<->  x  =  B ) )
Assertion
Ref Expression
riota5  |-  ( ph  ->  ( iota_ x  e.  A  ps )  =  B
)
Distinct variable groups:    x, A    x, B    ph, x
Allowed substitution hint:    ps( x)

Proof of Theorem riota5
StepHypRef Expression
1 nfcvd 2337 . 2  |-  ( ph  -> 
F/_ x B )
2 riota5.1 . 2  |-  ( ph  ->  B  e.  A )
3 riota5.2 . 2  |-  ( (
ph  /\  x  e.  A )  ->  ( ps 
<->  x  =  B ) )
41, 2, 3riota5f 5898 1  |-  ( ph  ->  ( iota_ x  e.  A  ps )  =  B
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2164   iota_crio 5872
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-reu 2479  df-v 2762  df-sbc 2986  df-un 3157  df-sn 3624  df-pr 3625  df-uni 3836  df-iota 5215  df-riota 5873
This theorem is referenced by:  f1ocnvfv3  5907  caucvgrelemrec  11123  sqrt0  11148  sqrtsq  11188  dfgcd3  12147
  Copyright terms: Public domain W3C validator