ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caucvgrelemrec Unicode version

Theorem caucvgrelemrec 11144
Description: Two ways to express a reciprocal. (Contributed by Jim Kingdon, 20-Jul-2021.)
Assertion
Ref Expression
caucvgrelemrec  |-  ( ( A  e.  RR  /\  A #  0 )  ->  ( iota_ r  e.  RR  ( A  x.  r )  =  1 )  =  ( 1  /  A
) )
Distinct variable group:    A, r

Proof of Theorem caucvgrelemrec
StepHypRef Expression
1 rerecclap 8757 . 2  |-  ( ( A  e.  RR  /\  A #  0 )  ->  (
1  /  A )  e.  RR )
2 simpr 110 . . . . 5  |-  ( ( ( A  e.  RR  /\  A #  0 )  /\  r  e.  RR )  ->  r  e.  RR )
32recnd 8055 . . . 4  |-  ( ( ( A  e.  RR  /\  A #  0 )  /\  r  e.  RR )  ->  r  e.  CC )
4 simpll 527 . . . . 5  |-  ( ( ( A  e.  RR  /\  A #  0 )  /\  r  e.  RR )  ->  A  e.  RR )
54recnd 8055 . . . 4  |-  ( ( ( A  e.  RR  /\  A #  0 )  /\  r  e.  RR )  ->  A  e.  CC )
6 simplr 528 . . . 4  |-  ( ( ( A  e.  RR  /\  A #  0 )  /\  r  e.  RR )  ->  A #  0 )
7 ax-1cn 7972 . . . . 5  |-  1  e.  CC
8 divmulap 8702 . . . . 5  |-  ( ( 1  e.  CC  /\  r  e.  CC  /\  ( A  e.  CC  /\  A #  0 ) )  -> 
( ( 1  /  A )  =  r  <-> 
( A  x.  r
)  =  1 ) )
97, 8mp3an1 1335 . . . 4  |-  ( ( r  e.  CC  /\  ( A  e.  CC  /\  A #  0 ) )  ->  ( ( 1  /  A )  =  r  <->  ( A  x.  r )  =  1 ) )
103, 5, 6, 9syl12anc 1247 . . 3  |-  ( ( ( A  e.  RR  /\  A #  0 )  /\  r  e.  RR )  ->  ( ( 1  /  A )  =  r  <-> 
( A  x.  r
)  =  1 ) )
11 eqcom 2198 . . 3  |-  ( ( 1  /  A )  =  r  <->  r  =  ( 1  /  A
) )
1210, 11bitr3di 195 . 2  |-  ( ( ( A  e.  RR  /\  A #  0 )  /\  r  e.  RR )  ->  ( ( A  x.  r )  =  1  <-> 
r  =  ( 1  /  A ) ) )
131, 12riota5 5903 1  |-  ( ( A  e.  RR  /\  A #  0 )  ->  ( iota_ r  e.  RR  ( A  x.  r )  =  1 )  =  ( 1  /  A
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2167   class class class wbr 4033   iota_crio 5876  (class class class)co 5922   CCcc 7877   RRcr 7878   0cc0 7879   1c1 7880    x. cmul 7884   # cap 8608    / cdiv 8699
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996  ax-pre-mulext 7997
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-id 4328  df-po 4331  df-iso 4332  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-iota 5219  df-fun 5260  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609  df-div 8700
This theorem is referenced by:  caucvgrelemcau  11145
  Copyright terms: Public domain W3C validator