ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uzind4s Unicode version

Theorem uzind4s 9785
Description: Induction on the upper set of integers that starts at an integer  M, using explicit substitution. The hypotheses are the basis and the induction step. (Contributed by NM, 4-Nov-2005.)
Hypotheses
Ref Expression
uzind4s.1  |-  ( M  e.  ZZ  ->  [. M  /  k ]. ph )
uzind4s.2  |-  ( k  e.  ( ZZ>= `  M
)  ->  ( ph  ->  [. ( k  +  1 )  /  k ]. ph ) )
Assertion
Ref Expression
uzind4s  |-  ( N  e.  ( ZZ>= `  M
)  ->  [. N  / 
k ]. ph )
Distinct variable group:    k, M
Allowed substitution hints:    ph( k)    N( k)

Proof of Theorem uzind4s
Dummy variables  m  j are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfsbcq2 3031 . 2  |-  ( j  =  M  ->  ( [ j  /  k ] ph  <->  [. M  /  k ]. ph ) )
2 sbequ 1886 . 2  |-  ( j  =  m  ->  ( [ j  /  k ] ph  <->  [ m  /  k ] ph ) )
3 dfsbcq2 3031 . 2  |-  ( j  =  ( m  + 
1 )  ->  ( [ j  /  k ] ph  <->  [. ( m  + 
1 )  /  k ]. ph ) )
4 dfsbcq2 3031 . 2  |-  ( j  =  N  ->  ( [ j  /  k ] ph  <->  [. N  /  k ]. ph ) )
5 uzind4s.1 . 2  |-  ( M  e.  ZZ  ->  [. M  /  k ]. ph )
6 nfv 1574 . . . 4  |-  F/ k  m  e.  ( ZZ>= `  M )
7 nfs1v 1990 . . . . 5  |-  F/ k [ m  /  k ] ph
8 nfsbc1v 3047 . . . . 5  |-  F/ k
[. ( m  + 
1 )  /  k ]. ph
97, 8nfim 1618 . . . 4  |-  F/ k ( [ m  / 
k ] ph  ->  [. ( m  +  1 )  /  k ]. ph )
106, 9nfim 1618 . . 3  |-  F/ k ( m  e.  (
ZZ>= `  M )  -> 
( [ m  / 
k ] ph  ->  [. ( m  +  1 )  /  k ]. ph ) )
11 eleq1 2292 . . . 4  |-  ( k  =  m  ->  (
k  e.  ( ZZ>= `  M )  <->  m  e.  ( ZZ>= `  M )
) )
12 sbequ12 1817 . . . . 5  |-  ( k  =  m  ->  ( ph 
<->  [ m  /  k ] ph ) )
13 oveq1 6008 . . . . . 6  |-  ( k  =  m  ->  (
k  +  1 )  =  ( m  + 
1 ) )
1413sbceq1d 3033 . . . . 5  |-  ( k  =  m  ->  ( [. ( k  +  1 )  /  k ]. ph  <->  [. ( m  +  1 )  /  k ]. ph ) )
1512, 14imbi12d 234 . . . 4  |-  ( k  =  m  ->  (
( ph  ->  [. (
k  +  1 )  /  k ]. ph )  <->  ( [ m  /  k ] ph  ->  [. ( m  +  1 )  / 
k ]. ph ) ) )
1611, 15imbi12d 234 . . 3  |-  ( k  =  m  ->  (
( k  e.  (
ZZ>= `  M )  -> 
( ph  ->  [. (
k  +  1 )  /  k ]. ph )
)  <->  ( m  e.  ( ZZ>= `  M )  ->  ( [ m  / 
k ] ph  ->  [. ( m  +  1 )  /  k ]. ph ) ) ) )
17 uzind4s.2 . . 3  |-  ( k  e.  ( ZZ>= `  M
)  ->  ( ph  ->  [. ( k  +  1 )  /  k ]. ph ) )
1810, 16, 17chvar 1803 . 2  |-  ( m  e.  ( ZZ>= `  M
)  ->  ( [
m  /  k ]
ph  ->  [. ( m  + 
1 )  /  k ]. ph ) )
191, 2, 3, 4, 5, 18uzind4 9783 1  |-  ( N  e.  ( ZZ>= `  M
)  ->  [. N  / 
k ]. ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4   [wsb 1808    e. wcel 2200   [.wsbc 3028   ` cfv 5318  (class class class)co 6001   1c1 8000    + caddc 8002   ZZcz 9446   ZZ>=cuz 9722
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-addcom 8099  ax-addass 8101  ax-distr 8103  ax-i2m1 8104  ax-0lt1 8105  ax-0id 8107  ax-rnegex 8108  ax-cnre 8110  ax-pre-ltirr 8111  ax-pre-ltwlin 8112  ax-pre-lttrn 8113  ax-pre-ltadd 8115
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-fv 5326  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-le 8187  df-sub 8319  df-neg 8320  df-inn 9111  df-n0 9370  df-z 9447  df-uz 9723
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator