ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uzind4s Unicode version

Theorem uzind4s 9528
Description: Induction on the upper set of integers that starts at an integer  M, using explicit substitution. The hypotheses are the basis and the induction step. (Contributed by NM, 4-Nov-2005.)
Hypotheses
Ref Expression
uzind4s.1  |-  ( M  e.  ZZ  ->  [. M  /  k ]. ph )
uzind4s.2  |-  ( k  e.  ( ZZ>= `  M
)  ->  ( ph  ->  [. ( k  +  1 )  /  k ]. ph ) )
Assertion
Ref Expression
uzind4s  |-  ( N  e.  ( ZZ>= `  M
)  ->  [. N  / 
k ]. ph )
Distinct variable group:    k, M
Allowed substitution hints:    ph( k)    N( k)

Proof of Theorem uzind4s
Dummy variables  m  j are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfsbcq2 2954 . 2  |-  ( j  =  M  ->  ( [ j  /  k ] ph  <->  [. M  /  k ]. ph ) )
2 sbequ 1828 . 2  |-  ( j  =  m  ->  ( [ j  /  k ] ph  <->  [ m  /  k ] ph ) )
3 dfsbcq2 2954 . 2  |-  ( j  =  ( m  + 
1 )  ->  ( [ j  /  k ] ph  <->  [. ( m  + 
1 )  /  k ]. ph ) )
4 dfsbcq2 2954 . 2  |-  ( j  =  N  ->  ( [ j  /  k ] ph  <->  [. N  /  k ]. ph ) )
5 uzind4s.1 . 2  |-  ( M  e.  ZZ  ->  [. M  /  k ]. ph )
6 nfv 1516 . . . 4  |-  F/ k  m  e.  ( ZZ>= `  M )
7 nfs1v 1927 . . . . 5  |-  F/ k [ m  /  k ] ph
8 nfsbc1v 2969 . . . . 5  |-  F/ k
[. ( m  + 
1 )  /  k ]. ph
97, 8nfim 1560 . . . 4  |-  F/ k ( [ m  / 
k ] ph  ->  [. ( m  +  1 )  /  k ]. ph )
106, 9nfim 1560 . . 3  |-  F/ k ( m  e.  (
ZZ>= `  M )  -> 
( [ m  / 
k ] ph  ->  [. ( m  +  1 )  /  k ]. ph ) )
11 eleq1 2229 . . . 4  |-  ( k  =  m  ->  (
k  e.  ( ZZ>= `  M )  <->  m  e.  ( ZZ>= `  M )
) )
12 sbequ12 1759 . . . . 5  |-  ( k  =  m  ->  ( ph 
<->  [ m  /  k ] ph ) )
13 oveq1 5849 . . . . . 6  |-  ( k  =  m  ->  (
k  +  1 )  =  ( m  + 
1 ) )
1413sbceq1d 2956 . . . . 5  |-  ( k  =  m  ->  ( [. ( k  +  1 )  /  k ]. ph  <->  [. ( m  +  1 )  /  k ]. ph ) )
1512, 14imbi12d 233 . . . 4  |-  ( k  =  m  ->  (
( ph  ->  [. (
k  +  1 )  /  k ]. ph )  <->  ( [ m  /  k ] ph  ->  [. ( m  +  1 )  / 
k ]. ph ) ) )
1611, 15imbi12d 233 . . 3  |-  ( k  =  m  ->  (
( k  e.  (
ZZ>= `  M )  -> 
( ph  ->  [. (
k  +  1 )  /  k ]. ph )
)  <->  ( m  e.  ( ZZ>= `  M )  ->  ( [ m  / 
k ] ph  ->  [. ( m  +  1 )  /  k ]. ph ) ) ) )
17 uzind4s.2 . . 3  |-  ( k  e.  ( ZZ>= `  M
)  ->  ( ph  ->  [. ( k  +  1 )  /  k ]. ph ) )
1810, 16, 17chvar 1745 . 2  |-  ( m  e.  ( ZZ>= `  M
)  ->  ( [
m  /  k ]
ph  ->  [. ( m  + 
1 )  /  k ]. ph ) )
191, 2, 3, 4, 5, 18uzind4 9526 1  |-  ( N  e.  ( ZZ>= `  M
)  ->  [. N  / 
k ]. ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4   [wsb 1750    e. wcel 2136   [.wsbc 2951   ` cfv 5188  (class class class)co 5842   1c1 7754    + caddc 7756   ZZcz 9191   ZZ>=cuz 9466
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-addcom 7853  ax-addass 7855  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-0id 7861  ax-rnegex 7862  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-ltadd 7869
This theorem depends on definitions:  df-bi 116  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-inn 8858  df-n0 9115  df-z 9192  df-uz 9467
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator