Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nn1suc | Unicode version |
Description: If a statement holds for 1 and also holds for a successor, it holds for all positive integers. The first three hypotheses give us the substitution instances we need; the last two show that it holds for 1 and for a successor. (Contributed by NM, 11-Oct-2004.) (Revised by Mario Carneiro, 16-May-2014.) |
Ref | Expression |
---|---|
nn1suc.1 | |
nn1suc.3 | |
nn1suc.4 | |
nn1suc.5 | |
nn1suc.6 |
Ref | Expression |
---|---|
nn1suc |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn1suc.5 | . . . . 5 | |
2 | 1ex 7867 | . . . . . 6 | |
3 | nn1suc.1 | . . . . . 6 | |
4 | 2, 3 | sbcie 2971 | . . . . 5 |
5 | 1, 4 | mpbir 145 | . . . 4 |
6 | 1nn 8838 | . . . . . . 7 | |
7 | eleq1 2220 | . . . . . . 7 | |
8 | 6, 7 | mpbiri 167 | . . . . . 6 |
9 | nn1suc.4 | . . . . . . 7 | |
10 | 9 | sbcieg 2969 | . . . . . 6 |
11 | 8, 10 | syl 14 | . . . . 5 |
12 | dfsbcq 2939 | . . . . 5 | |
13 | 11, 12 | bitr3d 189 | . . . 4 |
14 | 5, 13 | mpbiri 167 | . . 3 |
15 | 14 | a1i 9 | . 2 |
16 | elisset 2726 | . . . 4 | |
17 | eleq1 2220 | . . . . . 6 | |
18 | 17 | pm5.32ri 451 | . . . . 5 |
19 | nn1suc.6 | . . . . . . 7 | |
20 | 19 | adantr 274 | . . . . . 6 |
21 | nnre 8834 | . . . . . . . . 9 | |
22 | peano2re 8005 | . . . . . . . . 9 | |
23 | nn1suc.3 | . . . . . . . . . 10 | |
24 | 23 | sbcieg 2969 | . . . . . . . . 9 |
25 | 21, 22, 24 | 3syl 17 | . . . . . . . 8 |
26 | 25 | adantr 274 | . . . . . . 7 |
27 | oveq1 5828 | . . . . . . . . 9 | |
28 | 27 | sbceq1d 2942 | . . . . . . . 8 |
29 | 28 | adantl 275 | . . . . . . 7 |
30 | 26, 29 | bitr3d 189 | . . . . . 6 |
31 | 20, 30 | mpbid 146 | . . . . 5 |
32 | 18, 31 | sylbir 134 | . . . 4 |
33 | 16, 32 | exlimddv 1878 | . . 3 |
34 | nncn 8835 | . . . . . 6 | |
35 | ax-1cn 7819 | . . . . . 6 | |
36 | npcan 8078 | . . . . . 6 | |
37 | 34, 35, 36 | sylancl 410 | . . . . 5 |
38 | 37 | sbceq1d 2942 | . . . 4 |
39 | 38, 10 | bitrd 187 | . . 3 |
40 | 33, 39 | syl5ib 153 | . 2 |
41 | nn1m1nn 8845 | . 2 | |
42 | 15, 40, 41 | mpjaod 708 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1335 wcel 2128 wsbc 2937 (class class class)co 5821 cc 7724 cr 7725 c1 7727 caddc 7729 cmin 8040 cn 8827 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-14 2131 ax-ext 2139 ax-sep 4082 ax-pow 4135 ax-pr 4169 ax-setind 4495 ax-cnex 7817 ax-resscn 7818 ax-1cn 7819 ax-1re 7820 ax-icn 7821 ax-addcl 7822 ax-addrcl 7823 ax-mulcl 7824 ax-addcom 7826 ax-addass 7828 ax-distr 7830 ax-i2m1 7831 ax-0id 7834 ax-rnegex 7835 ax-cnre 7837 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ne 2328 df-ral 2440 df-rex 2441 df-reu 2442 df-rab 2444 df-v 2714 df-sbc 2938 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-int 3808 df-br 3966 df-opab 4026 df-id 4253 df-xp 4591 df-rel 4592 df-cnv 4593 df-co 4594 df-dm 4595 df-iota 5134 df-fun 5171 df-fv 5177 df-riota 5777 df-ov 5824 df-oprab 5825 df-mpo 5826 df-sub 8042 df-inn 8828 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |