| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nn1suc | Unicode version | ||
| Description: If a statement holds for 1 and also holds for a successor, it holds for all positive integers. The first three hypotheses give us the substitution instances we need; the last two show that it holds for 1 and for a successor. (Contributed by NM, 11-Oct-2004.) (Revised by Mario Carneiro, 16-May-2014.) |
| Ref | Expression |
|---|---|
| nn1suc.1 |
|
| nn1suc.3 |
|
| nn1suc.4 |
|
| nn1suc.5 |
|
| nn1suc.6 |
|
| Ref | Expression |
|---|---|
| nn1suc |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn1suc.5 |
. . . . 5
| |
| 2 | 1ex 8141 |
. . . . . 6
| |
| 3 | nn1suc.1 |
. . . . . 6
| |
| 4 | 2, 3 | sbcie 3063 |
. . . . 5
|
| 5 | 1, 4 | mpbir 146 |
. . . 4
|
| 6 | 1nn 9121 |
. . . . . . 7
| |
| 7 | eleq1 2292 |
. . . . . . 7
| |
| 8 | 6, 7 | mpbiri 168 |
. . . . . 6
|
| 9 | nn1suc.4 |
. . . . . . 7
| |
| 10 | 9 | sbcieg 3061 |
. . . . . 6
|
| 11 | 8, 10 | syl 14 |
. . . . 5
|
| 12 | dfsbcq 3030 |
. . . . 5
| |
| 13 | 11, 12 | bitr3d 190 |
. . . 4
|
| 14 | 5, 13 | mpbiri 168 |
. . 3
|
| 15 | 14 | a1i 9 |
. 2
|
| 16 | elisset 2814 |
. . . 4
| |
| 17 | eleq1 2292 |
. . . . . 6
| |
| 18 | 17 | pm5.32ri 455 |
. . . . 5
|
| 19 | nn1suc.6 |
. . . . . . 7
| |
| 20 | 19 | adantr 276 |
. . . . . 6
|
| 21 | nnre 9117 |
. . . . . . . . 9
| |
| 22 | peano2re 8282 |
. . . . . . . . 9
| |
| 23 | nn1suc.3 |
. . . . . . . . . 10
| |
| 24 | 23 | sbcieg 3061 |
. . . . . . . . 9
|
| 25 | 21, 22, 24 | 3syl 17 |
. . . . . . . 8
|
| 26 | 25 | adantr 276 |
. . . . . . 7
|
| 27 | oveq1 6008 |
. . . . . . . . 9
| |
| 28 | 27 | sbceq1d 3033 |
. . . . . . . 8
|
| 29 | 28 | adantl 277 |
. . . . . . 7
|
| 30 | 26, 29 | bitr3d 190 |
. . . . . 6
|
| 31 | 20, 30 | mpbid 147 |
. . . . 5
|
| 32 | 18, 31 | sylbir 135 |
. . . 4
|
| 33 | 16, 32 | exlimddv 1945 |
. . 3
|
| 34 | nncn 9118 |
. . . . . 6
| |
| 35 | ax-1cn 8092 |
. . . . . 6
| |
| 36 | npcan 8355 |
. . . . . 6
| |
| 37 | 34, 35, 36 | sylancl 413 |
. . . . 5
|
| 38 | 37 | sbceq1d 3033 |
. . . 4
|
| 39 | 38, 10 | bitrd 188 |
. . 3
|
| 40 | 33, 39 | imbitrid 154 |
. 2
|
| 41 | nn1m1nn 9128 |
. 2
| |
| 42 | 15, 40, 41 | mpjaod 723 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-setind 4629 ax-cnex 8090 ax-resscn 8091 ax-1cn 8092 ax-1re 8093 ax-icn 8094 ax-addcl 8095 ax-addrcl 8096 ax-mulcl 8097 ax-addcom 8099 ax-addass 8101 ax-distr 8103 ax-i2m1 8104 ax-0id 8107 ax-rnegex 8108 ax-cnre 8110 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-br 4084 df-opab 4146 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-iota 5278 df-fun 5320 df-fv 5326 df-riota 5954 df-ov 6004 df-oprab 6005 df-mpo 6006 df-sub 8319 df-inn 9111 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |