| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > nn1suc | Unicode version | ||
| Description: If a statement holds for 1 and also holds for a successor, it holds for all positive integers. The first three hypotheses give us the substitution instances we need; the last two show that it holds for 1 and for a successor. (Contributed by NM, 11-Oct-2004.) (Revised by Mario Carneiro, 16-May-2014.) | 
| Ref | Expression | 
|---|---|
| nn1suc.1 | 
 | 
| nn1suc.3 | 
 | 
| nn1suc.4 | 
 | 
| nn1suc.5 | 
 | 
| nn1suc.6 | 
 | 
| Ref | Expression | 
|---|---|
| nn1suc | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | nn1suc.5 | 
. . . . 5
 | |
| 2 | 1ex 8021 | 
. . . . . 6
 | |
| 3 | nn1suc.1 | 
. . . . . 6
 | |
| 4 | 2, 3 | sbcie 3024 | 
. . . . 5
 | 
| 5 | 1, 4 | mpbir 146 | 
. . . 4
 | 
| 6 | 1nn 9001 | 
. . . . . . 7
 | |
| 7 | eleq1 2259 | 
. . . . . . 7
 | |
| 8 | 6, 7 | mpbiri 168 | 
. . . . . 6
 | 
| 9 | nn1suc.4 | 
. . . . . . 7
 | |
| 10 | 9 | sbcieg 3022 | 
. . . . . 6
 | 
| 11 | 8, 10 | syl 14 | 
. . . . 5
 | 
| 12 | dfsbcq 2991 | 
. . . . 5
 | |
| 13 | 11, 12 | bitr3d 190 | 
. . . 4
 | 
| 14 | 5, 13 | mpbiri 168 | 
. . 3
 | 
| 15 | 14 | a1i 9 | 
. 2
 | 
| 16 | elisset 2777 | 
. . . 4
 | |
| 17 | eleq1 2259 | 
. . . . . 6
 | |
| 18 | 17 | pm5.32ri 455 | 
. . . . 5
 | 
| 19 | nn1suc.6 | 
. . . . . . 7
 | |
| 20 | 19 | adantr 276 | 
. . . . . 6
 | 
| 21 | nnre 8997 | 
. . . . . . . . 9
 | |
| 22 | peano2re 8162 | 
. . . . . . . . 9
 | |
| 23 | nn1suc.3 | 
. . . . . . . . . 10
 | |
| 24 | 23 | sbcieg 3022 | 
. . . . . . . . 9
 | 
| 25 | 21, 22, 24 | 3syl 17 | 
. . . . . . . 8
 | 
| 26 | 25 | adantr 276 | 
. . . . . . 7
 | 
| 27 | oveq1 5929 | 
. . . . . . . . 9
 | |
| 28 | 27 | sbceq1d 2994 | 
. . . . . . . 8
 | 
| 29 | 28 | adantl 277 | 
. . . . . . 7
 | 
| 30 | 26, 29 | bitr3d 190 | 
. . . . . 6
 | 
| 31 | 20, 30 | mpbid 147 | 
. . . . 5
 | 
| 32 | 18, 31 | sylbir 135 | 
. . . 4
 | 
| 33 | 16, 32 | exlimddv 1913 | 
. . 3
 | 
| 34 | nncn 8998 | 
. . . . . 6
 | |
| 35 | ax-1cn 7972 | 
. . . . . 6
 | |
| 36 | npcan 8235 | 
. . . . . 6
 | |
| 37 | 34, 35, 36 | sylancl 413 | 
. . . . 5
 | 
| 38 | 37 | sbceq1d 2994 | 
. . . 4
 | 
| 39 | 38, 10 | bitrd 188 | 
. . 3
 | 
| 40 | 33, 39 | imbitrid 154 | 
. 2
 | 
| 41 | nn1m1nn 9008 | 
. 2
 | |
| 42 | 15, 40, 41 | mpjaod 719 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-addcom 7979 ax-addass 7981 ax-distr 7983 ax-i2m1 7984 ax-0id 7987 ax-rnegex 7988 ax-cnre 7990 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-br 4034 df-opab 4095 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-iota 5219 df-fun 5260 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-sub 8199 df-inn 8991 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |