ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nn1suc Unicode version

Theorem nn1suc 9057
Description: If a statement holds for 1 and also holds for a successor, it holds for all positive integers. The first three hypotheses give us the substitution instances we need; the last two show that it holds for 1 and for a successor. (Contributed by NM, 11-Oct-2004.) (Revised by Mario Carneiro, 16-May-2014.)
Hypotheses
Ref Expression
nn1suc.1  |-  ( x  =  1  ->  ( ph 
<->  ps ) )
nn1suc.3  |-  ( x  =  ( y  +  1 )  ->  ( ph 
<->  ch ) )
nn1suc.4  |-  ( x  =  A  ->  ( ph 
<->  th ) )
nn1suc.5  |-  ps
nn1suc.6  |-  ( y  e.  NN  ->  ch )
Assertion
Ref Expression
nn1suc  |-  ( A  e.  NN  ->  th )
Distinct variable groups:    x, y, A    ps, x    ch, x    th, x    ph, y
Allowed substitution hints:    ph( x)    ps( y)    ch( y)    th( y)

Proof of Theorem nn1suc
StepHypRef Expression
1 nn1suc.5 . . . . 5  |-  ps
2 1ex 8069 . . . . . 6  |-  1  e.  _V
3 nn1suc.1 . . . . . 6  |-  ( x  =  1  ->  ( ph 
<->  ps ) )
42, 3sbcie 3033 . . . . 5  |-  ( [.
1  /  x ]. ph  <->  ps )
51, 4mpbir 146 . . . 4  |-  [. 1  /  x ]. ph
6 1nn 9049 . . . . . . 7  |-  1  e.  NN
7 eleq1 2268 . . . . . . 7  |-  ( A  =  1  ->  ( A  e.  NN  <->  1  e.  NN ) )
86, 7mpbiri 168 . . . . . 6  |-  ( A  =  1  ->  A  e.  NN )
9 nn1suc.4 . . . . . . 7  |-  ( x  =  A  ->  ( ph 
<->  th ) )
109sbcieg 3031 . . . . . 6  |-  ( A  e.  NN  ->  ( [. A  /  x ]. ph  <->  th ) )
118, 10syl 14 . . . . 5  |-  ( A  =  1  ->  ( [. A  /  x ]. ph  <->  th ) )
12 dfsbcq 3000 . . . . 5  |-  ( A  =  1  ->  ( [. A  /  x ]. ph  <->  [. 1  /  x ]. ph ) )
1311, 12bitr3d 190 . . . 4  |-  ( A  =  1  ->  ( th 
<-> 
[. 1  /  x ]. ph ) )
145, 13mpbiri 168 . . 3  |-  ( A  =  1  ->  th )
1514a1i 9 . 2  |-  ( A  e.  NN  ->  ( A  =  1  ->  th ) )
16 elisset 2786 . . . 4  |-  ( ( A  -  1 )  e.  NN  ->  E. y 
y  =  ( A  -  1 ) )
17 eleq1 2268 . . . . . 6  |-  ( y  =  ( A  - 
1 )  ->  (
y  e.  NN  <->  ( A  -  1 )  e.  NN ) )
1817pm5.32ri 455 . . . . 5  |-  ( ( y  e.  NN  /\  y  =  ( A  -  1 ) )  <-> 
( ( A  - 
1 )  e.  NN  /\  y  =  ( A  -  1 ) ) )
19 nn1suc.6 . . . . . . 7  |-  ( y  e.  NN  ->  ch )
2019adantr 276 . . . . . 6  |-  ( ( y  e.  NN  /\  y  =  ( A  -  1 ) )  ->  ch )
21 nnre 9045 . . . . . . . . 9  |-  ( y  e.  NN  ->  y  e.  RR )
22 peano2re 8210 . . . . . . . . 9  |-  ( y  e.  RR  ->  (
y  +  1 )  e.  RR )
23 nn1suc.3 . . . . . . . . . 10  |-  ( x  =  ( y  +  1 )  ->  ( ph 
<->  ch ) )
2423sbcieg 3031 . . . . . . . . 9  |-  ( ( y  +  1 )  e.  RR  ->  ( [. ( y  +  1 )  /  x ]. ph  <->  ch ) )
2521, 22, 243syl 17 . . . . . . . 8  |-  ( y  e.  NN  ->  ( [. ( y  +  1 )  /  x ]. ph  <->  ch ) )
2625adantr 276 . . . . . . 7  |-  ( ( y  e.  NN  /\  y  =  ( A  -  1 ) )  ->  ( [. (
y  +  1 )  /  x ]. ph  <->  ch )
)
27 oveq1 5953 . . . . . . . . 9  |-  ( y  =  ( A  - 
1 )  ->  (
y  +  1 )  =  ( ( A  -  1 )  +  1 ) )
2827sbceq1d 3003 . . . . . . . 8  |-  ( y  =  ( A  - 
1 )  ->  ( [. ( y  +  1 )  /  x ]. ph  <->  [. ( ( A  - 
1 )  +  1 )  /  x ]. ph ) )
2928adantl 277 . . . . . . 7  |-  ( ( y  e.  NN  /\  y  =  ( A  -  1 ) )  ->  ( [. (
y  +  1 )  /  x ]. ph  <->  [. ( ( A  -  1 )  +  1 )  /  x ]. ph ) )
3026, 29bitr3d 190 . . . . . 6  |-  ( ( y  e.  NN  /\  y  =  ( A  -  1 ) )  ->  ( ch  <->  [. ( ( A  -  1 )  +  1 )  /  x ]. ph ) )
3120, 30mpbid 147 . . . . 5  |-  ( ( y  e.  NN  /\  y  =  ( A  -  1 ) )  ->  [. ( ( A  -  1 )  +  1 )  /  x ]. ph )
3218, 31sylbir 135 . . . 4  |-  ( ( ( A  -  1 )  e.  NN  /\  y  =  ( A  -  1 ) )  ->  [. ( ( A  -  1 )  +  1 )  /  x ]. ph )
3316, 32exlimddv 1922 . . 3  |-  ( ( A  -  1 )  e.  NN  ->  [. (
( A  -  1 )  +  1 )  /  x ]. ph )
34 nncn 9046 . . . . . 6  |-  ( A  e.  NN  ->  A  e.  CC )
35 ax-1cn 8020 . . . . . 6  |-  1  e.  CC
36 npcan 8283 . . . . . 6  |-  ( ( A  e.  CC  /\  1  e.  CC )  ->  ( ( A  - 
1 )  +  1 )  =  A )
3734, 35, 36sylancl 413 . . . . 5  |-  ( A  e.  NN  ->  (
( A  -  1 )  +  1 )  =  A )
3837sbceq1d 3003 . . . 4  |-  ( A  e.  NN  ->  ( [. ( ( A  - 
1 )  +  1 )  /  x ]. ph  <->  [. A  /  x ]. ph ) )
3938, 10bitrd 188 . . 3  |-  ( A  e.  NN  ->  ( [. ( ( A  - 
1 )  +  1 )  /  x ]. ph  <->  th ) )
4033, 39imbitrid 154 . 2  |-  ( A  e.  NN  ->  (
( A  -  1 )  e.  NN  ->  th ) )
41 nn1m1nn 9056 . 2  |-  ( A  e.  NN  ->  ( A  =  1  \/  ( A  -  1
)  e.  NN ) )
4215, 40, 41mpjaod 720 1  |-  ( A  e.  NN  ->  th )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2176   [.wsbc 2998  (class class class)co 5946   CCcc 7925   RRcr 7926   1c1 7928    + caddc 7930    - cmin 8245   NNcn 9038
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4163  ax-pow 4219  ax-pr 4254  ax-setind 4586  ax-cnex 8018  ax-resscn 8019  ax-1cn 8020  ax-1re 8021  ax-icn 8022  ax-addcl 8023  ax-addrcl 8024  ax-mulcl 8025  ax-addcom 8027  ax-addass 8029  ax-distr 8031  ax-i2m1 8032  ax-0id 8035  ax-rnegex 8036  ax-cnre 8038
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-br 4046  df-opab 4107  df-id 4341  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-iota 5233  df-fun 5274  df-fv 5280  df-riota 5901  df-ov 5949  df-oprab 5950  df-mpo 5951  df-sub 8247  df-inn 9039
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator