| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nn1suc | Unicode version | ||
| Description: If a statement holds for 1 and also holds for a successor, it holds for all positive integers. The first three hypotheses give us the substitution instances we need; the last two show that it holds for 1 and for a successor. (Contributed by NM, 11-Oct-2004.) (Revised by Mario Carneiro, 16-May-2014.) |
| Ref | Expression |
|---|---|
| nn1suc.1 |
|
| nn1suc.3 |
|
| nn1suc.4 |
|
| nn1suc.5 |
|
| nn1suc.6 |
|
| Ref | Expression |
|---|---|
| nn1suc |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn1suc.5 |
. . . . 5
| |
| 2 | 1ex 8102 |
. . . . . 6
| |
| 3 | nn1suc.1 |
. . . . . 6
| |
| 4 | 2, 3 | sbcie 3040 |
. . . . 5
|
| 5 | 1, 4 | mpbir 146 |
. . . 4
|
| 6 | 1nn 9082 |
. . . . . . 7
| |
| 7 | eleq1 2270 |
. . . . . . 7
| |
| 8 | 6, 7 | mpbiri 168 |
. . . . . 6
|
| 9 | nn1suc.4 |
. . . . . . 7
| |
| 10 | 9 | sbcieg 3038 |
. . . . . 6
|
| 11 | 8, 10 | syl 14 |
. . . . 5
|
| 12 | dfsbcq 3007 |
. . . . 5
| |
| 13 | 11, 12 | bitr3d 190 |
. . . 4
|
| 14 | 5, 13 | mpbiri 168 |
. . 3
|
| 15 | 14 | a1i 9 |
. 2
|
| 16 | elisset 2791 |
. . . 4
| |
| 17 | eleq1 2270 |
. . . . . 6
| |
| 18 | 17 | pm5.32ri 455 |
. . . . 5
|
| 19 | nn1suc.6 |
. . . . . . 7
| |
| 20 | 19 | adantr 276 |
. . . . . 6
|
| 21 | nnre 9078 |
. . . . . . . . 9
| |
| 22 | peano2re 8243 |
. . . . . . . . 9
| |
| 23 | nn1suc.3 |
. . . . . . . . . 10
| |
| 24 | 23 | sbcieg 3038 |
. . . . . . . . 9
|
| 25 | 21, 22, 24 | 3syl 17 |
. . . . . . . 8
|
| 26 | 25 | adantr 276 |
. . . . . . 7
|
| 27 | oveq1 5974 |
. . . . . . . . 9
| |
| 28 | 27 | sbceq1d 3010 |
. . . . . . . 8
|
| 29 | 28 | adantl 277 |
. . . . . . 7
|
| 30 | 26, 29 | bitr3d 190 |
. . . . . 6
|
| 31 | 20, 30 | mpbid 147 |
. . . . 5
|
| 32 | 18, 31 | sylbir 135 |
. . . 4
|
| 33 | 16, 32 | exlimddv 1923 |
. . 3
|
| 34 | nncn 9079 |
. . . . . 6
| |
| 35 | ax-1cn 8053 |
. . . . . 6
| |
| 36 | npcan 8316 |
. . . . . 6
| |
| 37 | 34, 35, 36 | sylancl 413 |
. . . . 5
|
| 38 | 37 | sbceq1d 3010 |
. . . 4
|
| 39 | 38, 10 | bitrd 188 |
. . 3
|
| 40 | 33, 39 | imbitrid 154 |
. 2
|
| 41 | nn1m1nn 9089 |
. 2
| |
| 42 | 15, 40, 41 | mpjaod 720 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-setind 4603 ax-cnex 8051 ax-resscn 8052 ax-1cn 8053 ax-1re 8054 ax-icn 8055 ax-addcl 8056 ax-addrcl 8057 ax-mulcl 8058 ax-addcom 8060 ax-addass 8062 ax-distr 8064 ax-i2m1 8065 ax-0id 8068 ax-rnegex 8069 ax-cnre 8071 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-ral 2491 df-rex 2492 df-reu 2493 df-rab 2495 df-v 2778 df-sbc 3006 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-br 4060 df-opab 4122 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-iota 5251 df-fun 5292 df-fv 5298 df-riota 5922 df-ov 5970 df-oprab 5971 df-mpo 5972 df-sub 8280 df-inn 9072 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |