Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nn1suc | Unicode version |
Description: If a statement holds for 1 and also holds for a successor, it holds for all positive integers. The first three hypotheses give us the substitution instances we need; the last two show that it holds for 1 and for a successor. (Contributed by NM, 11-Oct-2004.) (Revised by Mario Carneiro, 16-May-2014.) |
Ref | Expression |
---|---|
nn1suc.1 | |
nn1suc.3 | |
nn1suc.4 | |
nn1suc.5 | |
nn1suc.6 |
Ref | Expression |
---|---|
nn1suc |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn1suc.5 | . . . . 5 | |
2 | 1ex 7894 | . . . . . 6 | |
3 | nn1suc.1 | . . . . . 6 | |
4 | 2, 3 | sbcie 2985 | . . . . 5 |
5 | 1, 4 | mpbir 145 | . . . 4 |
6 | 1nn 8868 | . . . . . . 7 | |
7 | eleq1 2229 | . . . . . . 7 | |
8 | 6, 7 | mpbiri 167 | . . . . . 6 |
9 | nn1suc.4 | . . . . . . 7 | |
10 | 9 | sbcieg 2983 | . . . . . 6 |
11 | 8, 10 | syl 14 | . . . . 5 |
12 | dfsbcq 2953 | . . . . 5 | |
13 | 11, 12 | bitr3d 189 | . . . 4 |
14 | 5, 13 | mpbiri 167 | . . 3 |
15 | 14 | a1i 9 | . 2 |
16 | elisset 2740 | . . . 4 | |
17 | eleq1 2229 | . . . . . 6 | |
18 | 17 | pm5.32ri 451 | . . . . 5 |
19 | nn1suc.6 | . . . . . . 7 | |
20 | 19 | adantr 274 | . . . . . 6 |
21 | nnre 8864 | . . . . . . . . 9 | |
22 | peano2re 8034 | . . . . . . . . 9 | |
23 | nn1suc.3 | . . . . . . . . . 10 | |
24 | 23 | sbcieg 2983 | . . . . . . . . 9 |
25 | 21, 22, 24 | 3syl 17 | . . . . . . . 8 |
26 | 25 | adantr 274 | . . . . . . 7 |
27 | oveq1 5849 | . . . . . . . . 9 | |
28 | 27 | sbceq1d 2956 | . . . . . . . 8 |
29 | 28 | adantl 275 | . . . . . . 7 |
30 | 26, 29 | bitr3d 189 | . . . . . 6 |
31 | 20, 30 | mpbid 146 | . . . . 5 |
32 | 18, 31 | sylbir 134 | . . . 4 |
33 | 16, 32 | exlimddv 1886 | . . 3 |
34 | nncn 8865 | . . . . . 6 | |
35 | ax-1cn 7846 | . . . . . 6 | |
36 | npcan 8107 | . . . . . 6 | |
37 | 34, 35, 36 | sylancl 410 | . . . . 5 |
38 | 37 | sbceq1d 2956 | . . . 4 |
39 | 38, 10 | bitrd 187 | . . 3 |
40 | 33, 39 | syl5ib 153 | . 2 |
41 | nn1m1nn 8875 | . 2 | |
42 | 15, 40, 41 | mpjaod 708 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1343 wcel 2136 wsbc 2951 (class class class)co 5842 cc 7751 cr 7752 c1 7754 caddc 7756 cmin 8069 cn 8857 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-setind 4514 ax-cnex 7844 ax-resscn 7845 ax-1cn 7846 ax-1re 7847 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-addcom 7853 ax-addass 7855 ax-distr 7857 ax-i2m1 7858 ax-0id 7861 ax-rnegex 7862 ax-cnre 7864 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-br 3983 df-opab 4044 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-iota 5153 df-fun 5190 df-fv 5196 df-riota 5798 df-ov 5845 df-oprab 5846 df-mpo 5847 df-sub 8071 df-inn 8858 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |