Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nn1suc | Unicode version |
Description: If a statement holds for 1 and also holds for a successor, it holds for all positive integers. The first three hypotheses give us the substitution instances we need; the last two show that it holds for 1 and for a successor. (Contributed by NM, 11-Oct-2004.) (Revised by Mario Carneiro, 16-May-2014.) |
Ref | Expression |
---|---|
nn1suc.1 | |
nn1suc.3 | |
nn1suc.4 | |
nn1suc.5 | |
nn1suc.6 |
Ref | Expression |
---|---|
nn1suc |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn1suc.5 | . . . . 5 | |
2 | 1ex 7915 | . . . . . 6 | |
3 | nn1suc.1 | . . . . . 6 | |
4 | 2, 3 | sbcie 2989 | . . . . 5 |
5 | 1, 4 | mpbir 145 | . . . 4 |
6 | 1nn 8889 | . . . . . . 7 | |
7 | eleq1 2233 | . . . . . . 7 | |
8 | 6, 7 | mpbiri 167 | . . . . . 6 |
9 | nn1suc.4 | . . . . . . 7 | |
10 | 9 | sbcieg 2987 | . . . . . 6 |
11 | 8, 10 | syl 14 | . . . . 5 |
12 | dfsbcq 2957 | . . . . 5 | |
13 | 11, 12 | bitr3d 189 | . . . 4 |
14 | 5, 13 | mpbiri 167 | . . 3 |
15 | 14 | a1i 9 | . 2 |
16 | elisset 2744 | . . . 4 | |
17 | eleq1 2233 | . . . . . 6 | |
18 | 17 | pm5.32ri 452 | . . . . 5 |
19 | nn1suc.6 | . . . . . . 7 | |
20 | 19 | adantr 274 | . . . . . 6 |
21 | nnre 8885 | . . . . . . . . 9 | |
22 | peano2re 8055 | . . . . . . . . 9 | |
23 | nn1suc.3 | . . . . . . . . . 10 | |
24 | 23 | sbcieg 2987 | . . . . . . . . 9 |
25 | 21, 22, 24 | 3syl 17 | . . . . . . . 8 |
26 | 25 | adantr 274 | . . . . . . 7 |
27 | oveq1 5860 | . . . . . . . . 9 | |
28 | 27 | sbceq1d 2960 | . . . . . . . 8 |
29 | 28 | adantl 275 | . . . . . . 7 |
30 | 26, 29 | bitr3d 189 | . . . . . 6 |
31 | 20, 30 | mpbid 146 | . . . . 5 |
32 | 18, 31 | sylbir 134 | . . . 4 |
33 | 16, 32 | exlimddv 1891 | . . 3 |
34 | nncn 8886 | . . . . . 6 | |
35 | ax-1cn 7867 | . . . . . 6 | |
36 | npcan 8128 | . . . . . 6 | |
37 | 34, 35, 36 | sylancl 411 | . . . . 5 |
38 | 37 | sbceq1d 2960 | . . . 4 |
39 | 38, 10 | bitrd 187 | . . 3 |
40 | 33, 39 | syl5ib 153 | . 2 |
41 | nn1m1nn 8896 | . 2 | |
42 | 15, 40, 41 | mpjaod 713 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1348 wcel 2141 wsbc 2955 (class class class)co 5853 cc 7772 cr 7773 c1 7775 caddc 7777 cmin 8090 cn 8878 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-setind 4521 ax-cnex 7865 ax-resscn 7866 ax-1cn 7867 ax-1re 7868 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-addcom 7874 ax-addass 7876 ax-distr 7878 ax-i2m1 7879 ax-0id 7882 ax-rnegex 7883 ax-cnre 7885 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-br 3990 df-opab 4051 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-iota 5160 df-fun 5200 df-fv 5206 df-riota 5809 df-ov 5856 df-oprab 5857 df-mpo 5858 df-sub 8092 df-inn 8879 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |