ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nn1suc Unicode version

Theorem nn1suc 8846
Description: If a statement holds for 1 and also holds for a successor, it holds for all positive integers. The first three hypotheses give us the substitution instances we need; the last two show that it holds for 1 and for a successor. (Contributed by NM, 11-Oct-2004.) (Revised by Mario Carneiro, 16-May-2014.)
Hypotheses
Ref Expression
nn1suc.1  |-  ( x  =  1  ->  ( ph 
<->  ps ) )
nn1suc.3  |-  ( x  =  ( y  +  1 )  ->  ( ph 
<->  ch ) )
nn1suc.4  |-  ( x  =  A  ->  ( ph 
<->  th ) )
nn1suc.5  |-  ps
nn1suc.6  |-  ( y  e.  NN  ->  ch )
Assertion
Ref Expression
nn1suc  |-  ( A  e.  NN  ->  th )
Distinct variable groups:    x, y, A    ps, x    ch, x    th, x    ph, y
Allowed substitution hints:    ph( x)    ps( y)    ch( y)    th( y)

Proof of Theorem nn1suc
StepHypRef Expression
1 nn1suc.5 . . . . 5  |-  ps
2 1ex 7867 . . . . . 6  |-  1  e.  _V
3 nn1suc.1 . . . . . 6  |-  ( x  =  1  ->  ( ph 
<->  ps ) )
42, 3sbcie 2971 . . . . 5  |-  ( [.
1  /  x ]. ph  <->  ps )
51, 4mpbir 145 . . . 4  |-  [. 1  /  x ]. ph
6 1nn 8838 . . . . . . 7  |-  1  e.  NN
7 eleq1 2220 . . . . . . 7  |-  ( A  =  1  ->  ( A  e.  NN  <->  1  e.  NN ) )
86, 7mpbiri 167 . . . . . 6  |-  ( A  =  1  ->  A  e.  NN )
9 nn1suc.4 . . . . . . 7  |-  ( x  =  A  ->  ( ph 
<->  th ) )
109sbcieg 2969 . . . . . 6  |-  ( A  e.  NN  ->  ( [. A  /  x ]. ph  <->  th ) )
118, 10syl 14 . . . . 5  |-  ( A  =  1  ->  ( [. A  /  x ]. ph  <->  th ) )
12 dfsbcq 2939 . . . . 5  |-  ( A  =  1  ->  ( [. A  /  x ]. ph  <->  [. 1  /  x ]. ph ) )
1311, 12bitr3d 189 . . . 4  |-  ( A  =  1  ->  ( th 
<-> 
[. 1  /  x ]. ph ) )
145, 13mpbiri 167 . . 3  |-  ( A  =  1  ->  th )
1514a1i 9 . 2  |-  ( A  e.  NN  ->  ( A  =  1  ->  th ) )
16 elisset 2726 . . . 4  |-  ( ( A  -  1 )  e.  NN  ->  E. y 
y  =  ( A  -  1 ) )
17 eleq1 2220 . . . . . 6  |-  ( y  =  ( A  - 
1 )  ->  (
y  e.  NN  <->  ( A  -  1 )  e.  NN ) )
1817pm5.32ri 451 . . . . 5  |-  ( ( y  e.  NN  /\  y  =  ( A  -  1 ) )  <-> 
( ( A  - 
1 )  e.  NN  /\  y  =  ( A  -  1 ) ) )
19 nn1suc.6 . . . . . . 7  |-  ( y  e.  NN  ->  ch )
2019adantr 274 . . . . . 6  |-  ( ( y  e.  NN  /\  y  =  ( A  -  1 ) )  ->  ch )
21 nnre 8834 . . . . . . . . 9  |-  ( y  e.  NN  ->  y  e.  RR )
22 peano2re 8005 . . . . . . . . 9  |-  ( y  e.  RR  ->  (
y  +  1 )  e.  RR )
23 nn1suc.3 . . . . . . . . . 10  |-  ( x  =  ( y  +  1 )  ->  ( ph 
<->  ch ) )
2423sbcieg 2969 . . . . . . . . 9  |-  ( ( y  +  1 )  e.  RR  ->  ( [. ( y  +  1 )  /  x ]. ph  <->  ch ) )
2521, 22, 243syl 17 . . . . . . . 8  |-  ( y  e.  NN  ->  ( [. ( y  +  1 )  /  x ]. ph  <->  ch ) )
2625adantr 274 . . . . . . 7  |-  ( ( y  e.  NN  /\  y  =  ( A  -  1 ) )  ->  ( [. (
y  +  1 )  /  x ]. ph  <->  ch )
)
27 oveq1 5828 . . . . . . . . 9  |-  ( y  =  ( A  - 
1 )  ->  (
y  +  1 )  =  ( ( A  -  1 )  +  1 ) )
2827sbceq1d 2942 . . . . . . . 8  |-  ( y  =  ( A  - 
1 )  ->  ( [. ( y  +  1 )  /  x ]. ph  <->  [. ( ( A  - 
1 )  +  1 )  /  x ]. ph ) )
2928adantl 275 . . . . . . 7  |-  ( ( y  e.  NN  /\  y  =  ( A  -  1 ) )  ->  ( [. (
y  +  1 )  /  x ]. ph  <->  [. ( ( A  -  1 )  +  1 )  /  x ]. ph ) )
3026, 29bitr3d 189 . . . . . 6  |-  ( ( y  e.  NN  /\  y  =  ( A  -  1 ) )  ->  ( ch  <->  [. ( ( A  -  1 )  +  1 )  /  x ]. ph ) )
3120, 30mpbid 146 . . . . 5  |-  ( ( y  e.  NN  /\  y  =  ( A  -  1 ) )  ->  [. ( ( A  -  1 )  +  1 )  /  x ]. ph )
3218, 31sylbir 134 . . . 4  |-  ( ( ( A  -  1 )  e.  NN  /\  y  =  ( A  -  1 ) )  ->  [. ( ( A  -  1 )  +  1 )  /  x ]. ph )
3316, 32exlimddv 1878 . . 3  |-  ( ( A  -  1 )  e.  NN  ->  [. (
( A  -  1 )  +  1 )  /  x ]. ph )
34 nncn 8835 . . . . . 6  |-  ( A  e.  NN  ->  A  e.  CC )
35 ax-1cn 7819 . . . . . 6  |-  1  e.  CC
36 npcan 8078 . . . . . 6  |-  ( ( A  e.  CC  /\  1  e.  CC )  ->  ( ( A  - 
1 )  +  1 )  =  A )
3734, 35, 36sylancl 410 . . . . 5  |-  ( A  e.  NN  ->  (
( A  -  1 )  +  1 )  =  A )
3837sbceq1d 2942 . . . 4  |-  ( A  e.  NN  ->  ( [. ( ( A  - 
1 )  +  1 )  /  x ]. ph  <->  [. A  /  x ]. ph ) )
3938, 10bitrd 187 . . 3  |-  ( A  e.  NN  ->  ( [. ( ( A  - 
1 )  +  1 )  /  x ]. ph  <->  th ) )
4033, 39syl5ib 153 . 2  |-  ( A  e.  NN  ->  (
( A  -  1 )  e.  NN  ->  th ) )
41 nn1m1nn 8845 . 2  |-  ( A  e.  NN  ->  ( A  =  1  \/  ( A  -  1
)  e.  NN ) )
4215, 40, 41mpjaod 708 1  |-  ( A  e.  NN  ->  th )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1335    e. wcel 2128   [.wsbc 2937  (class class class)co 5821   CCcc 7724   RRcr 7725   1c1 7727    + caddc 7729    - cmin 8040   NNcn 8827
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-14 2131  ax-ext 2139  ax-sep 4082  ax-pow 4135  ax-pr 4169  ax-setind 4495  ax-cnex 7817  ax-resscn 7818  ax-1cn 7819  ax-1re 7820  ax-icn 7821  ax-addcl 7822  ax-addrcl 7823  ax-mulcl 7824  ax-addcom 7826  ax-addass 7828  ax-distr 7830  ax-i2m1 7831  ax-0id 7834  ax-rnegex 7835  ax-cnre 7837
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-ral 2440  df-rex 2441  df-reu 2442  df-rab 2444  df-v 2714  df-sbc 2938  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-int 3808  df-br 3966  df-opab 4026  df-id 4253  df-xp 4591  df-rel 4592  df-cnv 4593  df-co 4594  df-dm 4595  df-iota 5134  df-fun 5171  df-fv 5177  df-riota 5777  df-ov 5824  df-oprab 5825  df-mpo 5826  df-sub 8042  df-inn 8828
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator