| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > isghm | Unicode version | ||
| Description: Property of being a homomorphism of groups. (Contributed by Stefan O'Rear, 31-Dec-2014.) |
| Ref | Expression |
|---|---|
| isghm.w |
|
| isghm.x |
|
| isghm.a |
|
| isghm.b |
|
| Ref | Expression |
|---|---|
| isghm |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ghm 13577 |
. . 3
| |
| 2 | 1 | elmpocl 6141 |
. 2
|
| 3 | isghm.w |
. . . . . . . 8
| |
| 4 | basfn 12890 |
. . . . . . . . 9
| |
| 5 | elex 2783 |
. . . . . . . . . 10
| |
| 6 | 5 | adantr 276 |
. . . . . . . . 9
|
| 7 | funfvex 5593 |
. . . . . . . . . 10
| |
| 8 | 7 | funfni 5376 |
. . . . . . . . 9
|
| 9 | 4, 6, 8 | sylancr 414 |
. . . . . . . 8
|
| 10 | 3, 9 | eqeltrid 2292 |
. . . . . . 7
|
| 11 | isghm.x |
. . . . . . . 8
| |
| 12 | elex 2783 |
. . . . . . . . . 10
| |
| 13 | 12 | adantl 277 |
. . . . . . . . 9
|
| 14 | funfvex 5593 |
. . . . . . . . . 10
| |
| 15 | 14 | funfni 5376 |
. . . . . . . . 9
|
| 16 | 4, 13, 15 | sylancr 414 |
. . . . . . . 8
|
| 17 | 11, 16 | eqeltrid 2292 |
. . . . . . 7
|
| 18 | mapex 6741 |
. . . . . . 7
| |
| 19 | 10, 17, 18 | syl2anc 411 |
. . . . . 6
|
| 20 | simpl 109 |
. . . . . . . 8
| |
| 21 | 20 | ss2abi 3265 |
. . . . . . 7
|
| 22 | 21 | a1i 9 |
. . . . . 6
|
| 23 | 19, 22 | ssexd 4184 |
. . . . 5
|
| 24 | vex 2775 |
. . . . . . . . . 10
| |
| 25 | funfvex 5593 |
. . . . . . . . . . 11
| |
| 26 | 25 | funfni 5376 |
. . . . . . . . . 10
|
| 27 | 4, 24, 26 | mp2an 426 |
. . . . . . . . 9
|
| 28 | feq2 5409 |
. . . . . . . . . 10
| |
| 29 | raleq 2702 |
. . . . . . . . . . 11
| |
| 30 | 29 | raleqbi1dv 2714 |
. . . . . . . . . 10
|
| 31 | 28, 30 | anbi12d 473 |
. . . . . . . . 9
|
| 32 | 27, 31 | sbcie 3033 |
. . . . . . . 8
|
| 33 | fveq2 5576 |
. . . . . . . . . . 11
| |
| 34 | 33, 3 | eqtr4di 2256 |
. . . . . . . . . 10
|
| 35 | 34 | feq2d 5413 |
. . . . . . . . 9
|
| 36 | fveq2 5576 |
. . . . . . . . . . . . . 14
| |
| 37 | isghm.a |
. . . . . . . . . . . . . 14
| |
| 38 | 36, 37 | eqtr4di 2256 |
. . . . . . . . . . . . 13
|
| 39 | 38 | oveqd 5961 |
. . . . . . . . . . . 12
|
| 40 | 39 | fveqeq2d 5584 |
. . . . . . . . . . 11
|
| 41 | 34, 40 | raleqbidv 2718 |
. . . . . . . . . 10
|
| 42 | 34, 41 | raleqbidv 2718 |
. . . . . . . . 9
|
| 43 | 35, 42 | anbi12d 473 |
. . . . . . . 8
|
| 44 | 32, 43 | bitrid 192 |
. . . . . . 7
|
| 45 | 44 | abbidv 2323 |
. . . . . 6
|
| 46 | fveq2 5576 |
. . . . . . . . . 10
| |
| 47 | 46, 11 | eqtr4di 2256 |
. . . . . . . . 9
|
| 48 | 47 | feq3d 5414 |
. . . . . . . 8
|
| 49 | fveq2 5576 |
. . . . . . . . . . . 12
| |
| 50 | isghm.b |
. . . . . . . . . . . 12
| |
| 51 | 49, 50 | eqtr4di 2256 |
. . . . . . . . . . 11
|
| 52 | 51 | oveqd 5961 |
. . . . . . . . . 10
|
| 53 | 52 | eqeq2d 2217 |
. . . . . . . . 9
|
| 54 | 53 | 2ralbidv 2530 |
. . . . . . . 8
|
| 55 | 48, 54 | anbi12d 473 |
. . . . . . 7
|
| 56 | 55 | abbidv 2323 |
. . . . . 6
|
| 57 | 45, 56, 1 | ovmpog 6080 |
. . . . 5
|
| 58 | 23, 57 | mpd3an3 1351 |
. . . 4
|
| 59 | 58 | eleq2d 2275 |
. . 3
|
| 60 | simpr 110 |
. . . . . . 7
| |
| 61 | 10 | adantr 276 |
. . . . . . 7
|
| 62 | 60, 61 | fexd 5814 |
. . . . . 6
|
| 63 | 62 | ex 115 |
. . . . 5
|
| 64 | 63 | adantrd 279 |
. . . 4
|
| 65 | feq1 5408 |
. . . . . 6
| |
| 66 | fveq1 5575 |
. . . . . . . 8
| |
| 67 | fveq1 5575 |
. . . . . . . . 9
| |
| 68 | fveq1 5575 |
. . . . . . . . 9
| |
| 69 | 67, 68 | oveq12d 5962 |
. . . . . . . 8
|
| 70 | 66, 69 | eqeq12d 2220 |
. . . . . . 7
|
| 71 | 70 | 2ralbidv 2530 |
. . . . . 6
|
| 72 | 65, 71 | anbi12d 473 |
. . . . 5
|
| 73 | 72 | elab3g 2924 |
. . . 4
|
| 74 | 64, 73 | syl 14 |
. . 3
|
| 75 | 59, 74 | bitrd 188 |
. 2
|
| 76 | 2, 75 | biadanii 613 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-coll 4159 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-setind 4585 ax-cnex 8016 ax-resscn 8017 ax-1re 8019 ax-addrcl 8022 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-ral 2489 df-rex 2490 df-reu 2491 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-iun 3929 df-br 4045 df-opab 4106 df-mpt 4107 df-id 4340 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-ima 4688 df-iota 5232 df-fun 5273 df-fn 5274 df-f 5275 df-f1 5276 df-fo 5277 df-f1o 5278 df-fv 5279 df-ov 5947 df-oprab 5948 df-mpo 5949 df-inn 9037 df-ndx 12835 df-slot 12836 df-base 12838 df-ghm 13577 |
| This theorem is referenced by: isghm3 13580 ghmgrp1 13581 ghmgrp2 13582 ghmf 13583 ghmlin 13584 isghmd 13588 idghm 13595 ghmf1o 13611 rhmopp 13938 expghmap 14369 mulgghm2 14370 |
| Copyright terms: Public domain | W3C validator |