| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > isghm | Unicode version | ||
| Description: Property of being a homomorphism of groups. (Contributed by Stefan O'Rear, 31-Dec-2014.) |
| Ref | Expression |
|---|---|
| isghm.w |
|
| isghm.x |
|
| isghm.a |
|
| isghm.b |
|
| Ref | Expression |
|---|---|
| isghm |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ghm 13447 |
. . 3
| |
| 2 | 1 | elmpocl 6122 |
. 2
|
| 3 | isghm.w |
. . . . . . . 8
| |
| 4 | basfn 12761 |
. . . . . . . . 9
| |
| 5 | elex 2774 |
. . . . . . . . . 10
| |
| 6 | 5 | adantr 276 |
. . . . . . . . 9
|
| 7 | funfvex 5578 |
. . . . . . . . . 10
| |
| 8 | 7 | funfni 5361 |
. . . . . . . . 9
|
| 9 | 4, 6, 8 | sylancr 414 |
. . . . . . . 8
|
| 10 | 3, 9 | eqeltrid 2283 |
. . . . . . 7
|
| 11 | isghm.x |
. . . . . . . 8
| |
| 12 | elex 2774 |
. . . . . . . . . 10
| |
| 13 | 12 | adantl 277 |
. . . . . . . . 9
|
| 14 | funfvex 5578 |
. . . . . . . . . 10
| |
| 15 | 14 | funfni 5361 |
. . . . . . . . 9
|
| 16 | 4, 13, 15 | sylancr 414 |
. . . . . . . 8
|
| 17 | 11, 16 | eqeltrid 2283 |
. . . . . . 7
|
| 18 | mapex 6722 |
. . . . . . 7
| |
| 19 | 10, 17, 18 | syl2anc 411 |
. . . . . 6
|
| 20 | simpl 109 |
. . . . . . . 8
| |
| 21 | 20 | ss2abi 3256 |
. . . . . . 7
|
| 22 | 21 | a1i 9 |
. . . . . 6
|
| 23 | 19, 22 | ssexd 4174 |
. . . . 5
|
| 24 | vex 2766 |
. . . . . . . . . 10
| |
| 25 | funfvex 5578 |
. . . . . . . . . . 11
| |
| 26 | 25 | funfni 5361 |
. . . . . . . . . 10
|
| 27 | 4, 24, 26 | mp2an 426 |
. . . . . . . . 9
|
| 28 | feq2 5394 |
. . . . . . . . . 10
| |
| 29 | raleq 2693 |
. . . . . . . . . . 11
| |
| 30 | 29 | raleqbi1dv 2705 |
. . . . . . . . . 10
|
| 31 | 28, 30 | anbi12d 473 |
. . . . . . . . 9
|
| 32 | 27, 31 | sbcie 3024 |
. . . . . . . 8
|
| 33 | fveq2 5561 |
. . . . . . . . . . 11
| |
| 34 | 33, 3 | eqtr4di 2247 |
. . . . . . . . . 10
|
| 35 | 34 | feq2d 5398 |
. . . . . . . . 9
|
| 36 | fveq2 5561 |
. . . . . . . . . . . . . 14
| |
| 37 | isghm.a |
. . . . . . . . . . . . . 14
| |
| 38 | 36, 37 | eqtr4di 2247 |
. . . . . . . . . . . . 13
|
| 39 | 38 | oveqd 5942 |
. . . . . . . . . . . 12
|
| 40 | 39 | fveqeq2d 5569 |
. . . . . . . . . . 11
|
| 41 | 34, 40 | raleqbidv 2709 |
. . . . . . . . . 10
|
| 42 | 34, 41 | raleqbidv 2709 |
. . . . . . . . 9
|
| 43 | 35, 42 | anbi12d 473 |
. . . . . . . 8
|
| 44 | 32, 43 | bitrid 192 |
. . . . . . 7
|
| 45 | 44 | abbidv 2314 |
. . . . . 6
|
| 46 | fveq2 5561 |
. . . . . . . . . 10
| |
| 47 | 46, 11 | eqtr4di 2247 |
. . . . . . . . 9
|
| 48 | 47 | feq3d 5399 |
. . . . . . . 8
|
| 49 | fveq2 5561 |
. . . . . . . . . . . 12
| |
| 50 | isghm.b |
. . . . . . . . . . . 12
| |
| 51 | 49, 50 | eqtr4di 2247 |
. . . . . . . . . . 11
|
| 52 | 51 | oveqd 5942 |
. . . . . . . . . 10
|
| 53 | 52 | eqeq2d 2208 |
. . . . . . . . 9
|
| 54 | 53 | 2ralbidv 2521 |
. . . . . . . 8
|
| 55 | 48, 54 | anbi12d 473 |
. . . . . . 7
|
| 56 | 55 | abbidv 2314 |
. . . . . 6
|
| 57 | 45, 56, 1 | ovmpog 6061 |
. . . . 5
|
| 58 | 23, 57 | mpd3an3 1349 |
. . . 4
|
| 59 | 58 | eleq2d 2266 |
. . 3
|
| 60 | simpr 110 |
. . . . . . 7
| |
| 61 | 10 | adantr 276 |
. . . . . . 7
|
| 62 | 60, 61 | fexd 5795 |
. . . . . 6
|
| 63 | 62 | ex 115 |
. . . . 5
|
| 64 | 63 | adantrd 279 |
. . . 4
|
| 65 | feq1 5393 |
. . . . . 6
| |
| 66 | fveq1 5560 |
. . . . . . . 8
| |
| 67 | fveq1 5560 |
. . . . . . . . 9
| |
| 68 | fveq1 5560 |
. . . . . . . . 9
| |
| 69 | 67, 68 | oveq12d 5943 |
. . . . . . . 8
|
| 70 | 66, 69 | eqeq12d 2211 |
. . . . . . 7
|
| 71 | 70 | 2ralbidv 2521 |
. . . . . 6
|
| 72 | 65, 71 | anbi12d 473 |
. . . . 5
|
| 73 | 72 | elab3g 2915 |
. . . 4
|
| 74 | 64, 73 | syl 14 |
. . 3
|
| 75 | 59, 74 | bitrd 188 |
. 2
|
| 76 | 2, 75 | biadanii 613 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7987 ax-resscn 7988 ax-1re 7990 ax-addrcl 7993 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-ov 5928 df-oprab 5929 df-mpo 5930 df-inn 9008 df-ndx 12706 df-slot 12707 df-base 12709 df-ghm 13447 |
| This theorem is referenced by: isghm3 13450 ghmgrp1 13451 ghmgrp2 13452 ghmf 13453 ghmlin 13454 isghmd 13458 idghm 13465 ghmf1o 13481 rhmopp 13808 expghmap 14239 mulgghm2 14240 |
| Copyright terms: Public domain | W3C validator |