| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > isghm | Unicode version | ||
| Description: Property of being a homomorphism of groups. (Contributed by Stefan O'Rear, 31-Dec-2014.) |
| Ref | Expression |
|---|---|
| isghm.w |
|
| isghm.x |
|
| isghm.a |
|
| isghm.b |
|
| Ref | Expression |
|---|---|
| isghm |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ghm 13692 |
. . 3
| |
| 2 | 1 | elmpocl 6164 |
. 2
|
| 3 | isghm.w |
. . . . . . . 8
| |
| 4 | basfn 13005 |
. . . . . . . . 9
| |
| 5 | elex 2788 |
. . . . . . . . . 10
| |
| 6 | 5 | adantr 276 |
. . . . . . . . 9
|
| 7 | funfvex 5616 |
. . . . . . . . . 10
| |
| 8 | 7 | funfni 5395 |
. . . . . . . . 9
|
| 9 | 4, 6, 8 | sylancr 414 |
. . . . . . . 8
|
| 10 | 3, 9 | eqeltrid 2294 |
. . . . . . 7
|
| 11 | isghm.x |
. . . . . . . 8
| |
| 12 | elex 2788 |
. . . . . . . . . 10
| |
| 13 | 12 | adantl 277 |
. . . . . . . . 9
|
| 14 | funfvex 5616 |
. . . . . . . . . 10
| |
| 15 | 14 | funfni 5395 |
. . . . . . . . 9
|
| 16 | 4, 13, 15 | sylancr 414 |
. . . . . . . 8
|
| 17 | 11, 16 | eqeltrid 2294 |
. . . . . . 7
|
| 18 | mapex 6764 |
. . . . . . 7
| |
| 19 | 10, 17, 18 | syl2anc 411 |
. . . . . 6
|
| 20 | simpl 109 |
. . . . . . . 8
| |
| 21 | 20 | ss2abi 3273 |
. . . . . . 7
|
| 22 | 21 | a1i 9 |
. . . . . 6
|
| 23 | 19, 22 | ssexd 4200 |
. . . . 5
|
| 24 | vex 2779 |
. . . . . . . . . 10
| |
| 25 | funfvex 5616 |
. . . . . . . . . . 11
| |
| 26 | 25 | funfni 5395 |
. . . . . . . . . 10
|
| 27 | 4, 24, 26 | mp2an 426 |
. . . . . . . . 9
|
| 28 | feq2 5429 |
. . . . . . . . . 10
| |
| 29 | raleq 2705 |
. . . . . . . . . . 11
| |
| 30 | 29 | raleqbi1dv 2717 |
. . . . . . . . . 10
|
| 31 | 28, 30 | anbi12d 473 |
. . . . . . . . 9
|
| 32 | 27, 31 | sbcie 3040 |
. . . . . . . 8
|
| 33 | fveq2 5599 |
. . . . . . . . . . 11
| |
| 34 | 33, 3 | eqtr4di 2258 |
. . . . . . . . . 10
|
| 35 | 34 | feq2d 5433 |
. . . . . . . . 9
|
| 36 | fveq2 5599 |
. . . . . . . . . . . . . 14
| |
| 37 | isghm.a |
. . . . . . . . . . . . . 14
| |
| 38 | 36, 37 | eqtr4di 2258 |
. . . . . . . . . . . . 13
|
| 39 | 38 | oveqd 5984 |
. . . . . . . . . . . 12
|
| 40 | 39 | fveqeq2d 5607 |
. . . . . . . . . . 11
|
| 41 | 34, 40 | raleqbidv 2721 |
. . . . . . . . . 10
|
| 42 | 34, 41 | raleqbidv 2721 |
. . . . . . . . 9
|
| 43 | 35, 42 | anbi12d 473 |
. . . . . . . 8
|
| 44 | 32, 43 | bitrid 192 |
. . . . . . 7
|
| 45 | 44 | abbidv 2325 |
. . . . . 6
|
| 46 | fveq2 5599 |
. . . . . . . . . 10
| |
| 47 | 46, 11 | eqtr4di 2258 |
. . . . . . . . 9
|
| 48 | 47 | feq3d 5434 |
. . . . . . . 8
|
| 49 | fveq2 5599 |
. . . . . . . . . . . 12
| |
| 50 | isghm.b |
. . . . . . . . . . . 12
| |
| 51 | 49, 50 | eqtr4di 2258 |
. . . . . . . . . . 11
|
| 52 | 51 | oveqd 5984 |
. . . . . . . . . 10
|
| 53 | 52 | eqeq2d 2219 |
. . . . . . . . 9
|
| 54 | 53 | 2ralbidv 2532 |
. . . . . . . 8
|
| 55 | 48, 54 | anbi12d 473 |
. . . . . . 7
|
| 56 | 55 | abbidv 2325 |
. . . . . 6
|
| 57 | 45, 56, 1 | ovmpog 6103 |
. . . . 5
|
| 58 | 23, 57 | mpd3an3 1351 |
. . . 4
|
| 59 | 58 | eleq2d 2277 |
. . 3
|
| 60 | simpr 110 |
. . . . . . 7
| |
| 61 | 10 | adantr 276 |
. . . . . . 7
|
| 62 | 60, 61 | fexd 5837 |
. . . . . 6
|
| 63 | 62 | ex 115 |
. . . . 5
|
| 64 | 63 | adantrd 279 |
. . . 4
|
| 65 | feq1 5428 |
. . . . . 6
| |
| 66 | fveq1 5598 |
. . . . . . . 8
| |
| 67 | fveq1 5598 |
. . . . . . . . 9
| |
| 68 | fveq1 5598 |
. . . . . . . . 9
| |
| 69 | 67, 68 | oveq12d 5985 |
. . . . . . . 8
|
| 70 | 66, 69 | eqeq12d 2222 |
. . . . . . 7
|
| 71 | 70 | 2ralbidv 2532 |
. . . . . 6
|
| 72 | 65, 71 | anbi12d 473 |
. . . . 5
|
| 73 | 72 | elab3g 2931 |
. . . 4
|
| 74 | 64, 73 | syl 14 |
. . 3
|
| 75 | 59, 74 | bitrd 188 |
. 2
|
| 76 | 2, 75 | biadanii 613 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-coll 4175 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-cnex 8051 ax-resscn 8052 ax-1re 8054 ax-addrcl 8057 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-ral 2491 df-rex 2492 df-reu 2493 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-ov 5970 df-oprab 5971 df-mpo 5972 df-inn 9072 df-ndx 12950 df-slot 12951 df-base 12953 df-ghm 13692 |
| This theorem is referenced by: isghm3 13695 ghmgrp1 13696 ghmgrp2 13697 ghmf 13698 ghmlin 13699 isghmd 13703 idghm 13710 ghmf1o 13726 rhmopp 14053 expghmap 14484 mulgghm2 14485 |
| Copyright terms: Public domain | W3C validator |