Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > uniop | Unicode version |
Description: The union of an ordered pair. Theorem 65 of [Suppes] p. 39. (Contributed by NM, 17-Aug-2004.) (Revised by Mario Carneiro, 26-Apr-2015.) |
Ref | Expression |
---|---|
opthw.1 | |
opthw.2 |
Ref | Expression |
---|---|
uniop |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opthw.1 | . . . 4 | |
2 | opthw.2 | . . . 4 | |
3 | 1, 2 | dfop 3764 | . . 3 |
4 | 3 | unieqi 3806 | . 2 |
5 | 1 | snex 4171 | . . 3 |
6 | prexg 4196 | . . . 4 | |
7 | 1, 2, 6 | mp2an 424 | . . 3 |
8 | 5, 7 | unipr 3810 | . 2 |
9 | snsspr1 3728 | . . 3 | |
10 | ssequn1 3297 | . . 3 | |
11 | 9, 10 | mpbi 144 | . 2 |
12 | 4, 8, 11 | 3eqtri 2195 | 1 |
Colors of variables: wff set class |
Syntax hints: wceq 1348 wcel 2141 cvv 2730 cun 3119 wss 3121 csn 3583 cpr 3584 cop 3586 cuni 3796 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-rex 2454 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 |
This theorem is referenced by: uniopel 4241 elvvuni 4675 dmrnssfld 4874 |
Copyright terms: Public domain | W3C validator |