ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uniop Unicode version

Theorem uniop 4257
Description: The union of an ordered pair. Theorem 65 of [Suppes] p. 39. (Contributed by NM, 17-Aug-2004.) (Revised by Mario Carneiro, 26-Apr-2015.)
Hypotheses
Ref Expression
opthw.1  |-  A  e. 
_V
opthw.2  |-  B  e. 
_V
Assertion
Ref Expression
uniop  |-  U. <. A ,  B >.  =  { A ,  B }

Proof of Theorem uniop
StepHypRef Expression
1 opthw.1 . . . 4  |-  A  e. 
_V
2 opthw.2 . . . 4  |-  B  e. 
_V
31, 2dfop 3779 . . 3  |-  <. A ,  B >.  =  { { A } ,  { A ,  B } }
43unieqi 3821 . 2  |-  U. <. A ,  B >.  =  U. { { A } ,  { A ,  B } }
51snex 4187 . . 3  |-  { A }  e.  _V
6 prexg 4213 . . . 4  |-  ( ( A  e.  _V  /\  B  e.  _V )  ->  { A ,  B }  e.  _V )
71, 2, 6mp2an 426 . . 3  |-  { A ,  B }  e.  _V
85, 7unipr 3825 . 2  |-  U. { { A } ,  { A ,  B } }  =  ( { A }  u.  { A ,  B } )
9 snsspr1 3742 . . 3  |-  { A }  C_  { A ,  B }
10 ssequn1 3307 . . 3  |-  ( { A }  C_  { A ,  B }  <->  ( { A }  u.  { A ,  B } )  =  { A ,  B } )
119, 10mpbi 145 . 2  |-  ( { A }  u.  { A ,  B }
)  =  { A ,  B }
124, 8, 113eqtri 2202 1  |-  U. <. A ,  B >.  =  { A ,  B }
Colors of variables: wff set class
Syntax hints:    = wceq 1353    e. wcel 2148   _Vcvv 2739    u. cun 3129    C_ wss 3131   {csn 3594   {cpr 3595   <.cop 3597   U.cuni 3811
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-rex 2461  df-v 2741  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812
This theorem is referenced by:  uniopel  4258  elvvuni  4692  dmrnssfld  4892
  Copyright terms: Public domain W3C validator