ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uniop Unicode version

Theorem uniop 4240
Description: The union of an ordered pair. Theorem 65 of [Suppes] p. 39. (Contributed by NM, 17-Aug-2004.) (Revised by Mario Carneiro, 26-Apr-2015.)
Hypotheses
Ref Expression
opthw.1  |-  A  e. 
_V
opthw.2  |-  B  e. 
_V
Assertion
Ref Expression
uniop  |-  U. <. A ,  B >.  =  { A ,  B }

Proof of Theorem uniop
StepHypRef Expression
1 opthw.1 . . . 4  |-  A  e. 
_V
2 opthw.2 . . . 4  |-  B  e. 
_V
31, 2dfop 3764 . . 3  |-  <. A ,  B >.  =  { { A } ,  { A ,  B } }
43unieqi 3806 . 2  |-  U. <. A ,  B >.  =  U. { { A } ,  { A ,  B } }
51snex 4171 . . 3  |-  { A }  e.  _V
6 prexg 4196 . . . 4  |-  ( ( A  e.  _V  /\  B  e.  _V )  ->  { A ,  B }  e.  _V )
71, 2, 6mp2an 424 . . 3  |-  { A ,  B }  e.  _V
85, 7unipr 3810 . 2  |-  U. { { A } ,  { A ,  B } }  =  ( { A }  u.  { A ,  B } )
9 snsspr1 3728 . . 3  |-  { A }  C_  { A ,  B }
10 ssequn1 3297 . . 3  |-  ( { A }  C_  { A ,  B }  <->  ( { A }  u.  { A ,  B } )  =  { A ,  B } )
119, 10mpbi 144 . 2  |-  ( { A }  u.  { A ,  B }
)  =  { A ,  B }
124, 8, 113eqtri 2195 1  |-  U. <. A ,  B >.  =  { A ,  B }
Colors of variables: wff set class
Syntax hints:    = wceq 1348    e. wcel 2141   _Vcvv 2730    u. cun 3119    C_ wss 3121   {csn 3583   {cpr 3584   <.cop 3586   U.cuni 3796
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-rex 2454  df-v 2732  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797
This theorem is referenced by:  uniopel  4241  elvvuni  4675  dmrnssfld  4874
  Copyright terms: Public domain W3C validator