ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uniop Unicode version

Theorem uniop 4288
Description: The union of an ordered pair. Theorem 65 of [Suppes] p. 39. (Contributed by NM, 17-Aug-2004.) (Revised by Mario Carneiro, 26-Apr-2015.)
Hypotheses
Ref Expression
opthw.1  |-  A  e. 
_V
opthw.2  |-  B  e. 
_V
Assertion
Ref Expression
uniop  |-  U. <. A ,  B >.  =  { A ,  B }

Proof of Theorem uniop
StepHypRef Expression
1 opthw.1 . . . 4  |-  A  e. 
_V
2 opthw.2 . . . 4  |-  B  e. 
_V
31, 2dfop 3807 . . 3  |-  <. A ,  B >.  =  { { A } ,  { A ,  B } }
43unieqi 3849 . 2  |-  U. <. A ,  B >.  =  U. { { A } ,  { A ,  B } }
51snex 4218 . . 3  |-  { A }  e.  _V
6 prexg 4244 . . . 4  |-  ( ( A  e.  _V  /\  B  e.  _V )  ->  { A ,  B }  e.  _V )
71, 2, 6mp2an 426 . . 3  |-  { A ,  B }  e.  _V
85, 7unipr 3853 . 2  |-  U. { { A } ,  { A ,  B } }  =  ( { A }  u.  { A ,  B } )
9 snsspr1 3770 . . 3  |-  { A }  C_  { A ,  B }
10 ssequn1 3333 . . 3  |-  ( { A }  C_  { A ,  B }  <->  ( { A }  u.  { A ,  B } )  =  { A ,  B } )
119, 10mpbi 145 . 2  |-  ( { A }  u.  { A ,  B }
)  =  { A ,  B }
124, 8, 113eqtri 2221 1  |-  U. <. A ,  B >.  =  { A ,  B }
Colors of variables: wff set class
Syntax hints:    = wceq 1364    e. wcel 2167   _Vcvv 2763    u. cun 3155    C_ wss 3157   {csn 3622   {cpr 3623   <.cop 3625   U.cuni 3839
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-rex 2481  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840
This theorem is referenced by:  uniopel  4289  elvvuni  4727  dmrnssfld  4929
  Copyright terms: Public domain W3C validator