Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > snsspr1 | GIF version |
Description: A singleton is a subset of an unordered pair containing its member. (Contributed by NM, 27-Aug-2004.) |
Ref | Expression |
---|---|
snsspr1 | ⊢ {𝐴} ⊆ {𝐴, 𝐵} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssun1 3296 | . 2 ⊢ {𝐴} ⊆ ({𝐴} ∪ {𝐵}) | |
2 | df-pr 3596 | . 2 ⊢ {𝐴, 𝐵} = ({𝐴} ∪ {𝐵}) | |
3 | 1, 2 | sseqtrri 3188 | 1 ⊢ {𝐴} ⊆ {𝐴, 𝐵} |
Colors of variables: wff set class |
Syntax hints: ∪ cun 3125 ⊆ wss 3127 {csn 3589 {cpr 3590 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-ext 2157 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-v 2737 df-un 3131 df-in 3133 df-ss 3140 df-pr 3596 |
This theorem is referenced by: snsstp1 3739 ssprr 3752 uniop 4249 op1stb 4472 op1stbg 4473 ltrelxr 7992 |
Copyright terms: Public domain | W3C validator |