ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  snsspr1 GIF version

Theorem snsspr1 3770
Description: A singleton is a subset of an unordered pair containing its member. (Contributed by NM, 27-Aug-2004.)
Assertion
Ref Expression
snsspr1 {𝐴} ⊆ {𝐴, 𝐵}

Proof of Theorem snsspr1
StepHypRef Expression
1 ssun1 3326 . 2 {𝐴} ⊆ ({𝐴} ∪ {𝐵})
2 df-pr 3629 . 2 {𝐴, 𝐵} = ({𝐴} ∪ {𝐵})
31, 2sseqtrri 3218 1 {𝐴} ⊆ {𝐴, 𝐵}
Colors of variables: wff set class
Syntax hints:  cun 3155  wss 3157  {csn 3622  {cpr 3623
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-pr 3629
This theorem is referenced by:  snsstp1  3772  ssprr  3786  uniop  4288  op1stb  4513  op1stbg  4514  ltrelxr  8087  lspprid1  13967
  Copyright terms: Public domain W3C validator