ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ss2ab GIF version

Theorem ss2ab 3262
Description: Class abstractions in a subclass relationship. (Contributed by NM, 3-Jul-1994.)
Assertion
Ref Expression
ss2ab ({𝑥𝜑} ⊆ {𝑥𝜓} ↔ ∀𝑥(𝜑𝜓))

Proof of Theorem ss2ab
StepHypRef Expression
1 nfab1 2351 . . 3 𝑥{𝑥𝜑}
2 nfab1 2351 . . 3 𝑥{𝑥𝜓}
31, 2dfss2f 3185 . 2 ({𝑥𝜑} ⊆ {𝑥𝜓} ↔ ∀𝑥(𝑥 ∈ {𝑥𝜑} → 𝑥 ∈ {𝑥𝜓}))
4 abid 2194 . . . 4 (𝑥 ∈ {𝑥𝜑} ↔ 𝜑)
5 abid 2194 . . . 4 (𝑥 ∈ {𝑥𝜓} ↔ 𝜓)
64, 5imbi12i 239 . . 3 ((𝑥 ∈ {𝑥𝜑} → 𝑥 ∈ {𝑥𝜓}) ↔ (𝜑𝜓))
76albii 1494 . 2 (∀𝑥(𝑥 ∈ {𝑥𝜑} → 𝑥 ∈ {𝑥𝜓}) ↔ ∀𝑥(𝜑𝜓))
83, 7bitri 184 1 ({𝑥𝜑} ⊆ {𝑥𝜓} ↔ ∀𝑥(𝜑𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  wal 1371  wcel 2177  {cab 2192  wss 3167
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-in 3173  df-ss 3180
This theorem is referenced by:  abss  3263  ssab  3264  ss2abi  3266  ss2abdv  3267  ss2rab  3270  rabss2  3277  iotanul  5252  iotass  5254
  Copyright terms: Public domain W3C validator