Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ss2ab | GIF version |
Description: Class abstractions in a subclass relationship. (Contributed by NM, 3-Jul-1994.) |
Ref | Expression |
---|---|
ss2ab | ⊢ ({𝑥 ∣ 𝜑} ⊆ {𝑥 ∣ 𝜓} ↔ ∀𝑥(𝜑 → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfab1 2310 | . . 3 ⊢ Ⅎ𝑥{𝑥 ∣ 𝜑} | |
2 | nfab1 2310 | . . 3 ⊢ Ⅎ𝑥{𝑥 ∣ 𝜓} | |
3 | 1, 2 | dfss2f 3133 | . 2 ⊢ ({𝑥 ∣ 𝜑} ⊆ {𝑥 ∣ 𝜓} ↔ ∀𝑥(𝑥 ∈ {𝑥 ∣ 𝜑} → 𝑥 ∈ {𝑥 ∣ 𝜓})) |
4 | abid 2153 | . . . 4 ⊢ (𝑥 ∈ {𝑥 ∣ 𝜑} ↔ 𝜑) | |
5 | abid 2153 | . . . 4 ⊢ (𝑥 ∈ {𝑥 ∣ 𝜓} ↔ 𝜓) | |
6 | 4, 5 | imbi12i 238 | . . 3 ⊢ ((𝑥 ∈ {𝑥 ∣ 𝜑} → 𝑥 ∈ {𝑥 ∣ 𝜓}) ↔ (𝜑 → 𝜓)) |
7 | 6 | albii 1458 | . 2 ⊢ (∀𝑥(𝑥 ∈ {𝑥 ∣ 𝜑} → 𝑥 ∈ {𝑥 ∣ 𝜓}) ↔ ∀𝑥(𝜑 → 𝜓)) |
8 | 3, 7 | bitri 183 | 1 ⊢ ({𝑥 ∣ 𝜑} ⊆ {𝑥 ∣ 𝜓} ↔ ∀𝑥(𝜑 → 𝜓)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 ∀wal 1341 ∈ wcel 2136 {cab 2151 ⊆ wss 3116 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-in 3122 df-ss 3129 |
This theorem is referenced by: abss 3211 ssab 3212 ss2abi 3214 ss2abdv 3215 ss2rab 3218 rabss2 3225 iotanul 5168 iotass 5170 |
Copyright terms: Public domain | W3C validator |