ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ss2ab GIF version

Theorem ss2ab 3247
Description: Class abstractions in a subclass relationship. (Contributed by NM, 3-Jul-1994.)
Assertion
Ref Expression
ss2ab ({𝑥𝜑} ⊆ {𝑥𝜓} ↔ ∀𝑥(𝜑𝜓))

Proof of Theorem ss2ab
StepHypRef Expression
1 nfab1 2338 . . 3 𝑥{𝑥𝜑}
2 nfab1 2338 . . 3 𝑥{𝑥𝜓}
31, 2dfss2f 3170 . 2 ({𝑥𝜑} ⊆ {𝑥𝜓} ↔ ∀𝑥(𝑥 ∈ {𝑥𝜑} → 𝑥 ∈ {𝑥𝜓}))
4 abid 2181 . . . 4 (𝑥 ∈ {𝑥𝜑} ↔ 𝜑)
5 abid 2181 . . . 4 (𝑥 ∈ {𝑥𝜓} ↔ 𝜓)
64, 5imbi12i 239 . . 3 ((𝑥 ∈ {𝑥𝜑} → 𝑥 ∈ {𝑥𝜓}) ↔ (𝜑𝜓))
76albii 1481 . 2 (∀𝑥(𝑥 ∈ {𝑥𝜑} → 𝑥 ∈ {𝑥𝜓}) ↔ ∀𝑥(𝜑𝜓))
83, 7bitri 184 1 ({𝑥𝜑} ⊆ {𝑥𝜓} ↔ ∀𝑥(𝜑𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  wal 1362  wcel 2164  {cab 2179  wss 3153
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-in 3159  df-ss 3166
This theorem is referenced by:  abss  3248  ssab  3249  ss2abi  3251  ss2abdv  3252  ss2rab  3255  rabss2  3262  iotanul  5230  iotass  5232
  Copyright terms: Public domain W3C validator