ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssonuni GIF version

Theorem ssonuni 4580
Description: The union of a set of ordinal numbers is an ordinal number. Theorem 9 of [Suppes] p. 132. (Contributed by NM, 1-Nov-2003.)
Assertion
Ref Expression
ssonuni (𝐴𝑉 → (𝐴 ⊆ On → 𝐴 ∈ On))

Proof of Theorem ssonuni
StepHypRef Expression
1 ssorduni 4579 . 2 (𝐴 ⊆ On → Ord 𝐴)
2 uniexg 4530 . . 3 (𝐴𝑉 𝐴 ∈ V)
3 elong 4464 . . 3 ( 𝐴 ∈ V → ( 𝐴 ∈ On ↔ Ord 𝐴))
42, 3syl 14 . 2 (𝐴𝑉 → ( 𝐴 ∈ On ↔ Ord 𝐴))
51, 4imbitrrid 156 1 (𝐴𝑉 → (𝐴 ⊆ On → 𝐴 ∈ On))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  wcel 2200  Vcvv 2799  wss 3197   cuni 3888  Ord word 4453  Oncon0 4454
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-un 4524
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-in 3203  df-ss 3210  df-uni 3889  df-tr 4183  df-iord 4457  df-on 4459
This theorem is referenced by:  ssonunii  4581  onun2  4582  onuni  4586  iunon  6436
  Copyright terms: Public domain W3C validator