| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ssonuni | GIF version | ||
| Description: The union of a set of ordinal numbers is an ordinal number. Theorem 9 of [Suppes] p. 132. (Contributed by NM, 1-Nov-2003.) |
| Ref | Expression |
|---|---|
| ssonuni | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ⊆ On → ∪ 𝐴 ∈ On)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssorduni 4556 | . 2 ⊢ (𝐴 ⊆ On → Ord ∪ 𝐴) | |
| 2 | uniexg 4507 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ∪ 𝐴 ∈ V) | |
| 3 | elong 4441 | . . 3 ⊢ (∪ 𝐴 ∈ V → (∪ 𝐴 ∈ On ↔ Ord ∪ 𝐴)) | |
| 4 | 2, 3 | syl 14 | . 2 ⊢ (𝐴 ∈ 𝑉 → (∪ 𝐴 ∈ On ↔ Ord ∪ 𝐴)) |
| 5 | 1, 4 | imbitrrid 156 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ⊆ On → ∪ 𝐴 ∈ On)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∈ wcel 2180 Vcvv 2779 ⊆ wss 3177 ∪ cuni 3867 Ord word 4430 Oncon0 4431 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-13 2182 ax-14 2183 ax-ext 2191 ax-sep 4181 ax-un 4501 |
| This theorem depends on definitions: df-bi 117 df-3an 985 df-tru 1378 df-nf 1487 df-sb 1789 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ral 2493 df-rex 2494 df-v 2781 df-in 3183 df-ss 3190 df-uni 3868 df-tr 4162 df-iord 4434 df-on 4436 |
| This theorem is referenced by: ssonunii 4558 onun2 4559 onuni 4563 iunon 6400 |
| Copyright terms: Public domain | W3C validator |