ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssonuni GIF version

Theorem ssonuni 4465
Description: The union of a set of ordinal numbers is an ordinal number. Theorem 9 of [Suppes] p. 132. (Contributed by NM, 1-Nov-2003.)
Assertion
Ref Expression
ssonuni (𝐴𝑉 → (𝐴 ⊆ On → 𝐴 ∈ On))

Proof of Theorem ssonuni
StepHypRef Expression
1 ssorduni 4464 . 2 (𝐴 ⊆ On → Ord 𝐴)
2 uniexg 4417 . . 3 (𝐴𝑉 𝐴 ∈ V)
3 elong 4351 . . 3 ( 𝐴 ∈ V → ( 𝐴 ∈ On ↔ Ord 𝐴))
42, 3syl 14 . 2 (𝐴𝑉 → ( 𝐴 ∈ On ↔ Ord 𝐴))
51, 4syl5ibr 155 1 (𝐴𝑉 → (𝐴 ⊆ On → 𝐴 ∈ On))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104  wcel 2136  Vcvv 2726  wss 3116   cuni 3789  Ord word 4340  Oncon0 4341
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-un 4411
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-in 3122  df-ss 3129  df-uni 3790  df-tr 4081  df-iord 4344  df-on 4346
This theorem is referenced by:  ssonunii  4466  onun2  4467  onuni  4471  iunon  6252
  Copyright terms: Public domain W3C validator