| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > supeuti | Unicode version | ||
| Description: A supremum is unique. Similar to Theorem I.26 of [Apostol] p. 24 (but for suprema in general). (Contributed by Jim Kingdon, 23-Nov-2021.) |
| Ref | Expression |
|---|---|
| supmoti.ti |
|
| supeuti.2 |
|
| Ref | Expression |
|---|---|
| supeuti |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | supeuti.2 |
. 2
| |
| 2 | supmoti.ti |
. . 3
| |
| 3 | 2 | supmoti 7160 |
. 2
|
| 4 | reu5 2749 |
. 2
| |
| 5 | 1, 3, 4 | sylanbrc 417 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-v 2801 df-un 3201 df-sn 3672 df-pr 3673 df-op 3675 df-br 4084 |
| This theorem is referenced by: supval2ti 7162 eqsupti 7163 supclti 7165 supubti 7166 suplubti 7167 supelti 7169 |
| Copyright terms: Public domain | W3C validator |