Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > supeuti | Unicode version |
Description: A supremum is unique. Similar to Theorem I.26 of [Apostol] p. 24 (but for suprema in general). (Contributed by Jim Kingdon, 23-Nov-2021.) |
Ref | Expression |
---|---|
supmoti.ti | |
supeuti.2 |
Ref | Expression |
---|---|
supeuti |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | supeuti.2 | . 2 | |
2 | supmoti.ti | . . 3 | |
3 | 2 | supmoti 6970 | . 2 |
4 | reu5 2682 | . 2 | |
5 | 1, 3, 4 | sylanbrc 415 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 wcel 2141 wral 2448 wrex 2449 wreu 2450 wrmo 2451 class class class wbr 3989 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-reu 2455 df-rmo 2456 df-v 2732 df-un 3125 df-sn 3589 df-pr 3590 df-op 3592 df-br 3990 |
This theorem is referenced by: supval2ti 6972 eqsupti 6973 supclti 6975 supubti 6976 suplubti 6977 supelti 6979 |
Copyright terms: Public domain | W3C validator |