| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > supeuti | Unicode version | ||
| Description: A supremum is unique. Similar to Theorem I.26 of [Apostol] p. 24 (but for suprema in general). (Contributed by Jim Kingdon, 23-Nov-2021.) |
| Ref | Expression |
|---|---|
| supmoti.ti |
|
| supeuti.2 |
|
| Ref | Expression |
|---|---|
| supeuti |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | supeuti.2 |
. 2
| |
| 2 | supmoti.ti |
. . 3
| |
| 3 | 2 | supmoti 7068 |
. 2
|
| 4 | reu5 2714 |
. 2
| |
| 5 | 1, 3, 4 | sylanbrc 417 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-v 2765 df-un 3161 df-sn 3629 df-pr 3630 df-op 3632 df-br 4035 |
| This theorem is referenced by: supval2ti 7070 eqsupti 7071 supclti 7073 supubti 7074 suplubti 7075 supelti 7077 |
| Copyright terms: Public domain | W3C validator |