Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > supclti | Unicode version |
Description: A supremum belongs to its base class (closure law). See also supubti 6988 and suplubti 6989. (Contributed by Jim Kingdon, 24-Nov-2021.) |
Ref | Expression |
---|---|
supmoti.ti | |
supclti.2 |
Ref | Expression |
---|---|
supclti |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | supmoti.ti | . . 3 | |
2 | supclti.2 | . . 3 | |
3 | 1, 2 | supval2ti 6984 | . 2 |
4 | 1, 2 | supeuti 6983 | . . 3 |
5 | riotacl 5835 | . . 3 | |
6 | 4, 5 | syl 14 | . 2 |
7 | 3, 6 | eqeltrd 2252 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 104 wb 105 wcel 2146 wral 2453 wrex 2454 wreu 2455 class class class wbr 3998 crio 5820 csup 6971 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-ext 2157 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ral 2458 df-rex 2459 df-reu 2460 df-rmo 2461 df-rab 2462 df-v 2737 df-sbc 2961 df-un 3131 df-in 3133 df-ss 3140 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-br 3999 df-iota 5170 df-riota 5821 df-sup 6973 |
This theorem is referenced by: suplub2ti 6990 supelti 6991 supisoti 6999 infclti 7012 inflbti 7013 infglbti 7014 suprubex 8879 suprleubex 8882 sup3exmid 8885 suprzclex 9322 supminfex 9568 maxleast 11188 zsupcl 11913 dvdslegcd 11930 |
Copyright terms: Public domain | W3C validator |