Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > supclti | Unicode version |
Description: A supremum belongs to its base class (closure law). See also supubti 6964 and suplubti 6965. (Contributed by Jim Kingdon, 24-Nov-2021.) |
Ref | Expression |
---|---|
supmoti.ti | |
supclti.2 |
Ref | Expression |
---|---|
supclti |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | supmoti.ti | . . 3 | |
2 | supclti.2 | . . 3 | |
3 | 1, 2 | supval2ti 6960 | . 2 |
4 | 1, 2 | supeuti 6959 | . . 3 |
5 | riotacl 5812 | . . 3 | |
6 | 4, 5 | syl 14 | . 2 |
7 | 3, 6 | eqeltrd 2243 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 wcel 2136 wral 2444 wrex 2445 wreu 2446 class class class wbr 3982 crio 5797 csup 6947 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-reu 2451 df-rmo 2452 df-rab 2453 df-v 2728 df-sbc 2952 df-un 3120 df-in 3122 df-ss 3129 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-iota 5153 df-riota 5798 df-sup 6949 |
This theorem is referenced by: suplub2ti 6966 supelti 6967 supisoti 6975 infclti 6988 inflbti 6989 infglbti 6990 suprubex 8846 suprleubex 8849 sup3exmid 8852 suprzclex 9289 supminfex 9535 maxleast 11155 zsupcl 11880 dvdslegcd 11897 |
Copyright terms: Public domain | W3C validator |