| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > supclti | Unicode version | ||
| Description: A supremum belongs to its base class (closure law). See also supubti 7162 and suplubti 7163. (Contributed by Jim Kingdon, 24-Nov-2021.) |
| Ref | Expression |
|---|---|
| supmoti.ti |
|
| supclti.2 |
|
| Ref | Expression |
|---|---|
| supclti |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | supmoti.ti |
. . 3
| |
| 2 | supclti.2 |
. . 3
| |
| 3 | 1, 2 | supval2ti 7158 |
. 2
|
| 4 | 1, 2 | supeuti 7157 |
. . 3
|
| 5 | riotacl 5969 |
. . 3
| |
| 6 | 4, 5 | syl 14 |
. 2
|
| 7 | 3, 6 | eqeltrd 2306 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-un 3201 df-in 3203 df-ss 3210 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-iota 5277 df-riota 5953 df-sup 7147 |
| This theorem is referenced by: suplub2ti 7164 supelti 7165 supisoti 7173 infclti 7186 inflbti 7187 infglbti 7188 suprubex 9094 suprleubex 9097 sup3exmid 9100 suprzclex 9541 supminfex 9788 zsupcl 10446 maxleast 11719 dvdslegcd 12480 |
| Copyright terms: Public domain | W3C validator |