| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > supclti | Unicode version | ||
| Description: A supremum belongs to its base class (closure law). See also supubti 7127 and suplubti 7128. (Contributed by Jim Kingdon, 24-Nov-2021.) |
| Ref | Expression |
|---|---|
| supmoti.ti |
|
| supclti.2 |
|
| Ref | Expression |
|---|---|
| supclti |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | supmoti.ti |
. . 3
| |
| 2 | supclti.2 |
. . 3
| |
| 3 | 1, 2 | supval2ti 7123 |
. 2
|
| 4 | 1, 2 | supeuti 7122 |
. . 3
|
| 5 | riotacl 5937 |
. . 3
| |
| 6 | 4, 5 | syl 14 |
. 2
|
| 7 | 3, 6 | eqeltrd 2284 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-reu 2493 df-rmo 2494 df-rab 2495 df-v 2778 df-sbc 3006 df-un 3178 df-in 3180 df-ss 3187 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-br 4060 df-iota 5251 df-riota 5922 df-sup 7112 |
| This theorem is referenced by: suplub2ti 7129 supelti 7130 supisoti 7138 infclti 7151 inflbti 7152 infglbti 7153 suprubex 9059 suprleubex 9062 sup3exmid 9065 suprzclex 9506 supminfex 9753 zsupcl 10411 maxleast 11639 dvdslegcd 12400 |
| Copyright terms: Public domain | W3C validator |