Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > supclti | Unicode version |
Description: A supremum belongs to its base class (closure law). See also supubti 6976 and suplubti 6977. (Contributed by Jim Kingdon, 24-Nov-2021.) |
Ref | Expression |
---|---|
supmoti.ti | |
supclti.2 |
Ref | Expression |
---|---|
supclti |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | supmoti.ti | . . 3 | |
2 | supclti.2 | . . 3 | |
3 | 1, 2 | supval2ti 6972 | . 2 |
4 | 1, 2 | supeuti 6971 | . . 3 |
5 | riotacl 5823 | . . 3 | |
6 | 4, 5 | syl 14 | . 2 |
7 | 3, 6 | eqeltrd 2247 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 wcel 2141 wral 2448 wrex 2449 wreu 2450 class class class wbr 3989 crio 5808 csup 6959 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-reu 2455 df-rmo 2456 df-rab 2457 df-v 2732 df-sbc 2956 df-un 3125 df-in 3127 df-ss 3134 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-iota 5160 df-riota 5809 df-sup 6961 |
This theorem is referenced by: suplub2ti 6978 supelti 6979 supisoti 6987 infclti 7000 inflbti 7001 infglbti 7002 suprubex 8867 suprleubex 8870 sup3exmid 8873 suprzclex 9310 supminfex 9556 maxleast 11177 zsupcl 11902 dvdslegcd 11919 |
Copyright terms: Public domain | W3C validator |