Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > supmoti | Unicode version |
Description: Any class has at most one supremum in (where is interpreted as 'less than'). The hypothesis is satisfied by real numbers (see lttri3 7940) or other orders which correspond to tight apartnesses. (Contributed by Jim Kingdon, 23-Nov-2021.) |
Ref | Expression |
---|---|
supmoti.ti |
Ref | Expression |
---|---|
supmoti |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ancom 264 | . . . . . . 7 | |
2 | 1 | anbi2ci 455 | . . . . . 6 |
3 | an42 577 | . . . . . 6 | |
4 | an42 577 | . . . . . 6 | |
5 | 2, 3, 4 | 3bitr4i 211 | . . . . 5 |
6 | ralnex 2445 | . . . . . . . . 9 | |
7 | breq1 3968 | . . . . . . . . . . . . 13 | |
8 | breq1 3968 | . . . . . . . . . . . . . 14 | |
9 | 8 | rexbidv 2458 | . . . . . . . . . . . . 13 |
10 | 7, 9 | imbi12d 233 | . . . . . . . . . . . 12 |
11 | 10 | rspcva 2814 | . . . . . . . . . . 11 |
12 | breq2 3969 | . . . . . . . . . . . 12 | |
13 | 12 | cbvrexv 2681 | . . . . . . . . . . 11 |
14 | 11, 13 | syl6ibr 161 | . . . . . . . . . 10 |
15 | 14 | con3d 621 | . . . . . . . . 9 |
16 | 6, 15 | syl5bi 151 | . . . . . . . 8 |
17 | 16 | expimpd 361 | . . . . . . 7 |
18 | 17 | ad2antrl 482 | . . . . . 6 |
19 | ralnex 2445 | . . . . . . . . 9 | |
20 | breq1 3968 | . . . . . . . . . . . . 13 | |
21 | breq1 3968 | . . . . . . . . . . . . . 14 | |
22 | 21 | rexbidv 2458 | . . . . . . . . . . . . 13 |
23 | 20, 22 | imbi12d 233 | . . . . . . . . . . . 12 |
24 | 23 | rspcva 2814 | . . . . . . . . . . 11 |
25 | breq2 3969 | . . . . . . . . . . . 12 | |
26 | 25 | cbvrexv 2681 | . . . . . . . . . . 11 |
27 | 24, 26 | syl6ibr 161 | . . . . . . . . . 10 |
28 | 27 | con3d 621 | . . . . . . . . 9 |
29 | 19, 28 | syl5bi 151 | . . . . . . . 8 |
30 | 29 | expimpd 361 | . . . . . . 7 |
31 | 30 | ad2antll 483 | . . . . . 6 |
32 | 18, 31 | anim12d 333 | . . . . 5 |
33 | 5, 32 | syl5bi 151 | . . . 4 |
34 | supmoti.ti | . . . . . 6 | |
35 | 34 | ralrimivva 2539 | . . . . 5 |
36 | equequ1 1692 | . . . . . . 7 | |
37 | breq1 3968 | . . . . . . . . 9 | |
38 | 37 | notbid 657 | . . . . . . . 8 |
39 | breq2 3969 | . . . . . . . . 9 | |
40 | 39 | notbid 657 | . . . . . . . 8 |
41 | 38, 40 | anbi12d 465 | . . . . . . 7 |
42 | 36, 41 | bibi12d 234 | . . . . . 6 |
43 | equequ2 1693 | . . . . . . 7 | |
44 | breq2 3969 | . . . . . . . . 9 | |
45 | 44 | notbid 657 | . . . . . . . 8 |
46 | breq1 3968 | . . . . . . . . 9 | |
47 | 46 | notbid 657 | . . . . . . . 8 |
48 | 45, 47 | anbi12d 465 | . . . . . . 7 |
49 | 43, 48 | bibi12d 234 | . . . . . 6 |
50 | 42, 49 | rspc2v 2829 | . . . . 5 |
51 | 35, 50 | mpan9 279 | . . . 4 |
52 | 33, 51 | sylibrd 168 | . . 3 |
53 | 52 | ralrimivva 2539 | . 2 |
54 | breq1 3968 | . . . . . 6 | |
55 | 54 | notbid 657 | . . . . 5 |
56 | 55 | ralbidv 2457 | . . . 4 |
57 | breq2 3969 | . . . . . 6 | |
58 | 57 | imbi1d 230 | . . . . 5 |
59 | 58 | ralbidv 2457 | . . . 4 |
60 | 56, 59 | anbi12d 465 | . . 3 |
61 | 60 | rmo4 2905 | . 2 |
62 | 53, 61 | sylibr 133 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 wcel 2128 wral 2435 wrex 2436 wrmo 2438 class class class wbr 3965 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-ext 2139 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ral 2440 df-rex 2441 df-rmo 2443 df-v 2714 df-un 3106 df-sn 3566 df-pr 3567 df-op 3569 df-br 3966 |
This theorem is referenced by: supeuti 6930 infmoti 6964 |
Copyright terms: Public domain | W3C validator |