Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > supmoti | Unicode version |
Description: Any class has at most one supremum in (where is interpreted as 'less than'). The hypothesis is satisfied by real numbers (see lttri3 7999) or other orders which correspond to tight apartnesses. (Contributed by Jim Kingdon, 23-Nov-2021.) |
Ref | Expression |
---|---|
supmoti.ti |
Ref | Expression |
---|---|
supmoti |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ancom 264 | . . . . . . 7 | |
2 | 1 | anbi2ci 456 | . . . . . 6 |
3 | an42 582 | . . . . . 6 | |
4 | an42 582 | . . . . . 6 | |
5 | 2, 3, 4 | 3bitr4i 211 | . . . . 5 |
6 | ralnex 2458 | . . . . . . . . 9 | |
7 | breq1 3992 | . . . . . . . . . . . . 13 | |
8 | breq1 3992 | . . . . . . . . . . . . . 14 | |
9 | 8 | rexbidv 2471 | . . . . . . . . . . . . 13 |
10 | 7, 9 | imbi12d 233 | . . . . . . . . . . . 12 |
11 | 10 | rspcva 2832 | . . . . . . . . . . 11 |
12 | breq2 3993 | . . . . . . . . . . . 12 | |
13 | 12 | cbvrexv 2697 | . . . . . . . . . . 11 |
14 | 11, 13 | syl6ibr 161 | . . . . . . . . . 10 |
15 | 14 | con3d 626 | . . . . . . . . 9 |
16 | 6, 15 | syl5bi 151 | . . . . . . . 8 |
17 | 16 | expimpd 361 | . . . . . . 7 |
18 | 17 | ad2antrl 487 | . . . . . 6 |
19 | ralnex 2458 | . . . . . . . . 9 | |
20 | breq1 3992 | . . . . . . . . . . . . 13 | |
21 | breq1 3992 | . . . . . . . . . . . . . 14 | |
22 | 21 | rexbidv 2471 | . . . . . . . . . . . . 13 |
23 | 20, 22 | imbi12d 233 | . . . . . . . . . . . 12 |
24 | 23 | rspcva 2832 | . . . . . . . . . . 11 |
25 | breq2 3993 | . . . . . . . . . . . 12 | |
26 | 25 | cbvrexv 2697 | . . . . . . . . . . 11 |
27 | 24, 26 | syl6ibr 161 | . . . . . . . . . 10 |
28 | 27 | con3d 626 | . . . . . . . . 9 |
29 | 19, 28 | syl5bi 151 | . . . . . . . 8 |
30 | 29 | expimpd 361 | . . . . . . 7 |
31 | 30 | ad2antll 488 | . . . . . 6 |
32 | 18, 31 | anim12d 333 | . . . . 5 |
33 | 5, 32 | syl5bi 151 | . . . 4 |
34 | supmoti.ti | . . . . . 6 | |
35 | 34 | ralrimivva 2552 | . . . . 5 |
36 | equequ1 1705 | . . . . . . 7 | |
37 | breq1 3992 | . . . . . . . . 9 | |
38 | 37 | notbid 662 | . . . . . . . 8 |
39 | breq2 3993 | . . . . . . . . 9 | |
40 | 39 | notbid 662 | . . . . . . . 8 |
41 | 38, 40 | anbi12d 470 | . . . . . . 7 |
42 | 36, 41 | bibi12d 234 | . . . . . 6 |
43 | equequ2 1706 | . . . . . . 7 | |
44 | breq2 3993 | . . . . . . . . 9 | |
45 | 44 | notbid 662 | . . . . . . . 8 |
46 | breq1 3992 | . . . . . . . . 9 | |
47 | 46 | notbid 662 | . . . . . . . 8 |
48 | 45, 47 | anbi12d 470 | . . . . . . 7 |
49 | 43, 48 | bibi12d 234 | . . . . . 6 |
50 | 42, 49 | rspc2v 2847 | . . . . 5 |
51 | 35, 50 | mpan9 279 | . . . 4 |
52 | 33, 51 | sylibrd 168 | . . 3 |
53 | 52 | ralrimivva 2552 | . 2 |
54 | breq1 3992 | . . . . . 6 | |
55 | 54 | notbid 662 | . . . . 5 |
56 | 55 | ralbidv 2470 | . . . 4 |
57 | breq2 3993 | . . . . . 6 | |
58 | 57 | imbi1d 230 | . . . . 5 |
59 | 58 | ralbidv 2470 | . . . 4 |
60 | 56, 59 | anbi12d 470 | . . 3 |
61 | 60 | rmo4 2923 | . 2 |
62 | 53, 61 | sylibr 133 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 wcel 2141 wral 2448 wrex 2449 wrmo 2451 class class class wbr 3989 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-rmo 2456 df-v 2732 df-un 3125 df-sn 3589 df-pr 3590 df-op 3592 df-br 3990 |
This theorem is referenced by: supeuti 6971 infmoti 7005 |
Copyright terms: Public domain | W3C validator |