| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > supmoti | Unicode version | ||
| Description: Any class  | 
| Ref | Expression | 
|---|---|
| supmoti.ti | 
 | 
| Ref | Expression | 
|---|---|
| supmoti | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ancom 266 | 
. . . . . . 7
 | |
| 2 | 1 | anbi2ci 459 | 
. . . . . 6
 | 
| 3 | an42 587 | 
. . . . . 6
 | |
| 4 | an42 587 | 
. . . . . 6
 | |
| 5 | 2, 3, 4 | 3bitr4i 212 | 
. . . . 5
 | 
| 6 | ralnex 2485 | 
. . . . . . . . 9
 | |
| 7 | breq1 4036 | 
. . . . . . . . . . . . 13
 | |
| 8 | breq1 4036 | 
. . . . . . . . . . . . . 14
 | |
| 9 | 8 | rexbidv 2498 | 
. . . . . . . . . . . . 13
 | 
| 10 | 7, 9 | imbi12d 234 | 
. . . . . . . . . . . 12
 | 
| 11 | 10 | rspcva 2866 | 
. . . . . . . . . . 11
 | 
| 12 | breq2 4037 | 
. . . . . . . . . . . 12
 | |
| 13 | 12 | cbvrexv 2730 | 
. . . . . . . . . . 11
 | 
| 14 | 11, 13 | imbitrrdi 162 | 
. . . . . . . . . 10
 | 
| 15 | 14 | con3d 632 | 
. . . . . . . . 9
 | 
| 16 | 6, 15 | biimtrid 152 | 
. . . . . . . 8
 | 
| 17 | 16 | expimpd 363 | 
. . . . . . 7
 | 
| 18 | 17 | ad2antrl 490 | 
. . . . . 6
 | 
| 19 | ralnex 2485 | 
. . . . . . . . 9
 | |
| 20 | breq1 4036 | 
. . . . . . . . . . . . 13
 | |
| 21 | breq1 4036 | 
. . . . . . . . . . . . . 14
 | |
| 22 | 21 | rexbidv 2498 | 
. . . . . . . . . . . . 13
 | 
| 23 | 20, 22 | imbi12d 234 | 
. . . . . . . . . . . 12
 | 
| 24 | 23 | rspcva 2866 | 
. . . . . . . . . . 11
 | 
| 25 | breq2 4037 | 
. . . . . . . . . . . 12
 | |
| 26 | 25 | cbvrexv 2730 | 
. . . . . . . . . . 11
 | 
| 27 | 24, 26 | imbitrrdi 162 | 
. . . . . . . . . 10
 | 
| 28 | 27 | con3d 632 | 
. . . . . . . . 9
 | 
| 29 | 19, 28 | biimtrid 152 | 
. . . . . . . 8
 | 
| 30 | 29 | expimpd 363 | 
. . . . . . 7
 | 
| 31 | 30 | ad2antll 491 | 
. . . . . 6
 | 
| 32 | 18, 31 | anim12d 335 | 
. . . . 5
 | 
| 33 | 5, 32 | biimtrid 152 | 
. . . 4
 | 
| 34 | supmoti.ti | 
. . . . . 6
 | |
| 35 | 34 | ralrimivva 2579 | 
. . . . 5
 | 
| 36 | equequ1 1726 | 
. . . . . . 7
 | |
| 37 | breq1 4036 | 
. . . . . . . . 9
 | |
| 38 | 37 | notbid 668 | 
. . . . . . . 8
 | 
| 39 | breq2 4037 | 
. . . . . . . . 9
 | |
| 40 | 39 | notbid 668 | 
. . . . . . . 8
 | 
| 41 | 38, 40 | anbi12d 473 | 
. . . . . . 7
 | 
| 42 | 36, 41 | bibi12d 235 | 
. . . . . 6
 | 
| 43 | equequ2 1727 | 
. . . . . . 7
 | |
| 44 | breq2 4037 | 
. . . . . . . . 9
 | |
| 45 | 44 | notbid 668 | 
. . . . . . . 8
 | 
| 46 | breq1 4036 | 
. . . . . . . . 9
 | |
| 47 | 46 | notbid 668 | 
. . . . . . . 8
 | 
| 48 | 45, 47 | anbi12d 473 | 
. . . . . . 7
 | 
| 49 | 43, 48 | bibi12d 235 | 
. . . . . 6
 | 
| 50 | 42, 49 | rspc2v 2881 | 
. . . . 5
 | 
| 51 | 35, 50 | mpan9 281 | 
. . . 4
 | 
| 52 | 33, 51 | sylibrd 169 | 
. . 3
 | 
| 53 | 52 | ralrimivva 2579 | 
. 2
 | 
| 54 | breq1 4036 | 
. . . . . 6
 | |
| 55 | 54 | notbid 668 | 
. . . . 5
 | 
| 56 | 55 | ralbidv 2497 | 
. . . 4
 | 
| 57 | breq2 4037 | 
. . . . . 6
 | |
| 58 | 57 | imbi1d 231 | 
. . . . 5
 | 
| 59 | 58 | ralbidv 2497 | 
. . . 4
 | 
| 60 | 56, 59 | anbi12d 473 | 
. . 3
 | 
| 61 | 60 | rmo4 2957 | 
. 2
 | 
| 62 | 53, 61 | sylibr 134 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:    | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-rmo 2483 df-v 2765 df-un 3161 df-sn 3628 df-pr 3629 df-op 3631 df-br 4034 | 
| This theorem is referenced by: supeuti 7060 infmoti 7094 | 
| Copyright terms: Public domain | W3C validator |