Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > supmoti | Unicode version |
Description: Any class has at most one supremum in (where is interpreted as 'less than'). The hypothesis is satisfied by real numbers (see lttri3 7978) or other orders which correspond to tight apartnesses. (Contributed by Jim Kingdon, 23-Nov-2021.) |
Ref | Expression |
---|---|
supmoti.ti |
Ref | Expression |
---|---|
supmoti |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ancom 264 | . . . . . . 7 | |
2 | 1 | anbi2ci 455 | . . . . . 6 |
3 | an42 577 | . . . . . 6 | |
4 | an42 577 | . . . . . 6 | |
5 | 2, 3, 4 | 3bitr4i 211 | . . . . 5 |
6 | ralnex 2454 | . . . . . . . . 9 | |
7 | breq1 3985 | . . . . . . . . . . . . 13 | |
8 | breq1 3985 | . . . . . . . . . . . . . 14 | |
9 | 8 | rexbidv 2467 | . . . . . . . . . . . . 13 |
10 | 7, 9 | imbi12d 233 | . . . . . . . . . . . 12 |
11 | 10 | rspcva 2828 | . . . . . . . . . . 11 |
12 | breq2 3986 | . . . . . . . . . . . 12 | |
13 | 12 | cbvrexv 2693 | . . . . . . . . . . 11 |
14 | 11, 13 | syl6ibr 161 | . . . . . . . . . 10 |
15 | 14 | con3d 621 | . . . . . . . . 9 |
16 | 6, 15 | syl5bi 151 | . . . . . . . 8 |
17 | 16 | expimpd 361 | . . . . . . 7 |
18 | 17 | ad2antrl 482 | . . . . . 6 |
19 | ralnex 2454 | . . . . . . . . 9 | |
20 | breq1 3985 | . . . . . . . . . . . . 13 | |
21 | breq1 3985 | . . . . . . . . . . . . . 14 | |
22 | 21 | rexbidv 2467 | . . . . . . . . . . . . 13 |
23 | 20, 22 | imbi12d 233 | . . . . . . . . . . . 12 |
24 | 23 | rspcva 2828 | . . . . . . . . . . 11 |
25 | breq2 3986 | . . . . . . . . . . . 12 | |
26 | 25 | cbvrexv 2693 | . . . . . . . . . . 11 |
27 | 24, 26 | syl6ibr 161 | . . . . . . . . . 10 |
28 | 27 | con3d 621 | . . . . . . . . 9 |
29 | 19, 28 | syl5bi 151 | . . . . . . . 8 |
30 | 29 | expimpd 361 | . . . . . . 7 |
31 | 30 | ad2antll 483 | . . . . . 6 |
32 | 18, 31 | anim12d 333 | . . . . 5 |
33 | 5, 32 | syl5bi 151 | . . . 4 |
34 | supmoti.ti | . . . . . 6 | |
35 | 34 | ralrimivva 2548 | . . . . 5 |
36 | equequ1 1700 | . . . . . . 7 | |
37 | breq1 3985 | . . . . . . . . 9 | |
38 | 37 | notbid 657 | . . . . . . . 8 |
39 | breq2 3986 | . . . . . . . . 9 | |
40 | 39 | notbid 657 | . . . . . . . 8 |
41 | 38, 40 | anbi12d 465 | . . . . . . 7 |
42 | 36, 41 | bibi12d 234 | . . . . . 6 |
43 | equequ2 1701 | . . . . . . 7 | |
44 | breq2 3986 | . . . . . . . . 9 | |
45 | 44 | notbid 657 | . . . . . . . 8 |
46 | breq1 3985 | . . . . . . . . 9 | |
47 | 46 | notbid 657 | . . . . . . . 8 |
48 | 45, 47 | anbi12d 465 | . . . . . . 7 |
49 | 43, 48 | bibi12d 234 | . . . . . 6 |
50 | 42, 49 | rspc2v 2843 | . . . . 5 |
51 | 35, 50 | mpan9 279 | . . . 4 |
52 | 33, 51 | sylibrd 168 | . . 3 |
53 | 52 | ralrimivva 2548 | . 2 |
54 | breq1 3985 | . . . . . 6 | |
55 | 54 | notbid 657 | . . . . 5 |
56 | 55 | ralbidv 2466 | . . . 4 |
57 | breq2 3986 | . . . . . 6 | |
58 | 57 | imbi1d 230 | . . . . 5 |
59 | 58 | ralbidv 2466 | . . . 4 |
60 | 56, 59 | anbi12d 465 | . . 3 |
61 | 60 | rmo4 2919 | . 2 |
62 | 53, 61 | sylibr 133 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 wcel 2136 wral 2444 wrex 2445 wrmo 2447 class class class wbr 3982 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-rmo 2452 df-v 2728 df-un 3120 df-sn 3582 df-pr 3583 df-op 3585 df-br 3983 |
This theorem is referenced by: supeuti 6959 infmoti 6993 |
Copyright terms: Public domain | W3C validator |