| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > tapeq1 | Unicode version | ||
| Description: Equality theorem for tight apartness predicate. (Contributed by Jim Kingdon, 8-Feb-2025.) |
| Ref | Expression |
|---|---|
| tapeq1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseq1 3206 |
. . 3
| |
| 2 | breq 4035 |
. . . . . 6
| |
| 3 | 2 | notbid 668 |
. . . . 5
|
| 4 | 3 | ralbidv 2497 |
. . . 4
|
| 5 | breq 4035 |
. . . . . 6
| |
| 6 | breq 4035 |
. . . . . 6
| |
| 7 | 5, 6 | imbi12d 234 |
. . . . 5
|
| 8 | 7 | 2ralbidv 2521 |
. . . 4
|
| 9 | 4, 8 | anbi12d 473 |
. . 3
|
| 10 | breq 4035 |
. . . . . . . 8
| |
| 11 | breq 4035 |
. . . . . . . 8
| |
| 12 | 10, 11 | orbi12d 794 |
. . . . . . 7
|
| 13 | 5, 12 | imbi12d 234 |
. . . . . 6
|
| 14 | 13 | ralbidv 2497 |
. . . . 5
|
| 15 | 14 | 2ralbidv 2521 |
. . . 4
|
| 16 | 5 | notbid 668 |
. . . . . 6
|
| 17 | 16 | imbi1d 231 |
. . . . 5
|
| 18 | 17 | 2ralbidv 2521 |
. . . 4
|
| 19 | 15, 18 | anbi12d 473 |
. . 3
|
| 20 | 1, 9, 19 | 3anbi123d 1323 |
. 2
|
| 21 | dftap2 7318 |
. 2
| |
| 22 | dftap2 7318 |
. 2
| |
| 23 | 20, 21, 22 | 3bitr4g 223 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-ral 2480 df-in 3163 df-ss 3170 df-br 4034 df-pap 7315 df-tap 7317 |
| This theorem is referenced by: 2omotaplemst 7325 exmidapne 7327 exmidmotap 7328 |
| Copyright terms: Public domain | W3C validator |