| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > tapeq1 | Unicode version | ||
| Description: Equality theorem for tight apartness predicate. (Contributed by Jim Kingdon, 8-Feb-2025.) | 
| Ref | Expression | 
|---|---|
| tapeq1 | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | sseq1 3206 | 
. . 3
 | |
| 2 | breq 4035 | 
. . . . . 6
 | |
| 3 | 2 | notbid 668 | 
. . . . 5
 | 
| 4 | 3 | ralbidv 2497 | 
. . . 4
 | 
| 5 | breq 4035 | 
. . . . . 6
 | |
| 6 | breq 4035 | 
. . . . . 6
 | |
| 7 | 5, 6 | imbi12d 234 | 
. . . . 5
 | 
| 8 | 7 | 2ralbidv 2521 | 
. . . 4
 | 
| 9 | 4, 8 | anbi12d 473 | 
. . 3
 | 
| 10 | breq 4035 | 
. . . . . . . 8
 | |
| 11 | breq 4035 | 
. . . . . . . 8
 | |
| 12 | 10, 11 | orbi12d 794 | 
. . . . . . 7
 | 
| 13 | 5, 12 | imbi12d 234 | 
. . . . . 6
 | 
| 14 | 13 | ralbidv 2497 | 
. . . . 5
 | 
| 15 | 14 | 2ralbidv 2521 | 
. . . 4
 | 
| 16 | 5 | notbid 668 | 
. . . . . 6
 | 
| 17 | 16 | imbi1d 231 | 
. . . . 5
 | 
| 18 | 17 | 2ralbidv 2521 | 
. . . 4
 | 
| 19 | 15, 18 | anbi12d 473 | 
. . 3
 | 
| 20 | 1, 9, 19 | 3anbi123d 1323 | 
. 2
 | 
| 21 | dftap2 7318 | 
. 2
 | |
| 22 | dftap2 7318 | 
. 2
 | |
| 23 | 20, 21, 22 | 3bitr4g 223 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:    | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-ral 2480 df-in 3163 df-ss 3170 df-br 4034 df-pap 7315 df-tap 7317 | 
| This theorem is referenced by: 2omotaplemst 7325 exmidapne 7327 exmidmotap 7328 | 
| Copyright terms: Public domain | W3C validator |