| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > tapeq2 | Unicode version | ||
| Description: Equality theorem for tight apartness predicate. (Contributed by Jim Kingdon, 15-Feb-2025.) |
| Ref | Expression |
|---|---|
| tapeq2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpeq12 4737 |
. . . . 5
| |
| 2 | 1 | anidms 397 |
. . . 4
|
| 3 | 2 | sseq2d 3254 |
. . 3
|
| 4 | raleq 2728 |
. . . 4
| |
| 5 | raleq 2728 |
. . . . 5
| |
| 6 | 5 | raleqbi1dv 2740 |
. . . 4
|
| 7 | 4, 6 | anbi12d 473 |
. . 3
|
| 8 | raleq 2728 |
. . . . . 6
| |
| 9 | 8 | raleqbi1dv 2740 |
. . . . 5
|
| 10 | 9 | raleqbi1dv 2740 |
. . . 4
|
| 11 | raleq 2728 |
. . . . 5
| |
| 12 | 11 | raleqbi1dv 2740 |
. . . 4
|
| 13 | 10, 12 | anbi12d 473 |
. . 3
|
| 14 | 3, 7, 13 | 3anbi123d 1346 |
. 2
|
| 15 | dftap2 7433 |
. 2
| |
| 16 | dftap2 7433 |
. 2
| |
| 17 | 14, 15, 16 | 3bitr4g 223 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-in 3203 df-ss 3210 df-opab 4145 df-xp 4724 df-pap 7430 df-tap 7432 |
| This theorem is referenced by: exmidmotap 7443 |
| Copyright terms: Public domain | W3C validator |