ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lmodscad Unicode version

Theorem lmodscad 12467
Description: The set of scalars of a constructed left vector space. (Contributed by Mario Carneiro, 2-Oct-2013.) (Revised by Jim Kingdon, 6-Feb-2023.)
Hypotheses
Ref Expression
lvecfn.w  |-  W  =  ( { <. ( Base `  ndx ) ,  B >. ,  <. ( +g  `  ndx ) , 
.+  >. ,  <. (Scalar ` 
ndx ) ,  F >. }  u.  { <. ( .s `  ndx ) ,  .x.  >. } )
lmodstr.b  |-  ( ph  ->  B  e.  V )
lmodstr.g  |-  ( ph  ->  .+  e.  X )
lmodstr.s  |-  ( ph  ->  F  e.  Y )
lmodstr.m  |-  ( ph  ->  .x.  e.  Z )
Assertion
Ref Expression
lmodscad  |-  ( ph  ->  F  =  (Scalar `  W ) )

Proof of Theorem lmodscad
StepHypRef Expression
1 scaslid 12460 . 2  |-  (Scalar  = Slot  (Scalar `  ndx )  /\  (Scalar `  ndx )  e.  NN )
2 lvecfn.w . . 3  |-  W  =  ( { <. ( Base `  ndx ) ,  B >. ,  <. ( +g  `  ndx ) , 
.+  >. ,  <. (Scalar ` 
ndx ) ,  F >. }  u.  { <. ( .s `  ndx ) ,  .x.  >. } )
3 lmodstr.b . . 3  |-  ( ph  ->  B  e.  V )
4 lmodstr.g . . 3  |-  ( ph  ->  .+  e.  X )
5 lmodstr.s . . 3  |-  ( ph  ->  F  e.  Y )
6 lmodstr.m . . 3  |-  ( ph  ->  .x.  e.  Z )
72, 3, 4, 5, 6lmodstrd 12464 . 2  |-  ( ph  ->  W Struct  <. 1 ,  6
>. )
81simpri 112 . . . . 5  |-  (Scalar `  ndx )  e.  NN
9 opexg 4200 . . . . 5  |-  ( ( (Scalar `  ndx )  e.  NN  /\  F  e.  Y )  ->  <. (Scalar ` 
ndx ) ,  F >.  e.  _V )
108, 5, 9sylancr 411 . . . 4  |-  ( ph  -> 
<. (Scalar `  ndx ) ,  F >.  e.  _V )
11 tpid3g 3685 . . . 4  |-  ( <.
(Scalar `  ndx ) ,  F >.  e.  _V  -> 
<. (Scalar `  ndx ) ,  F >.  e.  { <. (
Base `  ndx ) ,  B >. ,  <. ( +g  `  ndx ) , 
.+  >. ,  <. (Scalar ` 
ndx ) ,  F >. } )
12 elun1 3284 . . . 4  |-  ( <.
(Scalar `  ndx ) ,  F >.  e.  { <. (
Base `  ndx ) ,  B >. ,  <. ( +g  `  ndx ) , 
.+  >. ,  <. (Scalar ` 
ndx ) ,  F >. }  ->  <. (Scalar `  ndx ) ,  F >.  e.  ( { <. ( Base `  ndx ) ,  B >. ,  <. ( +g  `  ndx ) , 
.+  >. ,  <. (Scalar ` 
ndx ) ,  F >. }  u.  { <. ( .s `  ndx ) ,  .x.  >. } ) )
1310, 11, 123syl 17 . . 3  |-  ( ph  -> 
<. (Scalar `  ndx ) ,  F >.  e.  ( { <. ( Base `  ndx ) ,  B >. , 
<. ( +g  `  ndx ) ,  .+  >. ,  <. (Scalar `  ndx ) ,  F >. }  u.  { <. ( .s `  ndx ) ,  .x.  >. } ) )
1413, 2eleqtrrdi 2258 . 2  |-  ( ph  -> 
<. (Scalar `  ndx ) ,  F >.  e.  W
)
151, 7, 5, 14opelstrsl 12427 1  |-  ( ph  ->  F  =  (Scalar `  W ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1342    e. wcel 2135   _Vcvv 2721    u. cun 3109   {csn 3570   {ctp 3572   <.cop 3573   ` cfv 5182   1c1 7745   NNcn 8848   6c6 8903   ndxcnx 12328  Slot cslot 12330   Basecbs 12331   +g cplusg 12393  Scalarcsca 12396   .scvsca 12397
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-13 2137  ax-14 2138  ax-ext 2146  ax-sep 4094  ax-pow 4147  ax-pr 4181  ax-un 4405  ax-setind 4508  ax-cnex 7835  ax-resscn 7836  ax-1cn 7837  ax-1re 7838  ax-icn 7839  ax-addcl 7840  ax-addrcl 7841  ax-mulcl 7842  ax-addcom 7844  ax-addass 7846  ax-distr 7848  ax-i2m1 7849  ax-0lt1 7850  ax-0id 7852  ax-rnegex 7853  ax-cnre 7855  ax-pre-ltirr 7856  ax-pre-ltwlin 7857  ax-pre-lttrn 7858  ax-pre-apti 7859  ax-pre-ltadd 7860
This theorem depends on definitions:  df-bi 116  df-3or 968  df-3an 969  df-tru 1345  df-fal 1348  df-nf 1448  df-sb 1750  df-eu 2016  df-mo 2017  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ne 2335  df-nel 2430  df-ral 2447  df-rex 2448  df-reu 2449  df-rab 2451  df-v 2723  df-sbc 2947  df-dif 3113  df-un 3115  df-in 3117  df-ss 3124  df-nul 3405  df-pw 3555  df-sn 3576  df-pr 3577  df-tp 3578  df-op 3579  df-uni 3784  df-int 3819  df-br 3977  df-opab 4038  df-mpt 4039  df-id 4265  df-xp 4604  df-rel 4605  df-cnv 4606  df-co 4607  df-dm 4608  df-rn 4609  df-res 4610  df-ima 4611  df-iota 5147  df-fun 5184  df-fn 5185  df-f 5186  df-fv 5190  df-riota 5792  df-ov 5839  df-oprab 5840  df-mpo 5841  df-pnf 7926  df-mnf 7927  df-xr 7928  df-ltxr 7929  df-le 7930  df-sub 8062  df-neg 8063  df-inn 8849  df-2 8907  df-3 8908  df-4 8909  df-5 8910  df-6 8911  df-n0 9106  df-z 9183  df-uz 9458  df-fz 9936  df-struct 12333  df-ndx 12334  df-slot 12335  df-base 12337  df-plusg 12406  df-sca 12409  df-vsca 12410
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator